next up previous
: Operators : Frames in Hilbert Space : Hilbert Spaces

Bases, Orthogonal, Orthonormal, and Complete Sets

We begin by defining orthogonal sets and orthonormal sets. So, let $ \{g_n\}$ be a subset of the space $ H$. $ \{g_n\}$ is said to be orthogonal if $ <g_n,g_m>=0$, if $ n \neq m$, and it is said to be orthonormal is $ <g_n,g_m>=\delta_{nm}$, where

$\displaystyle \delta_{nm}=\left\{ \begin{array}{ll}
1 & \mbox{if $n=m$} \\
0 & \mbox{if $n \neq m$}
\end{array}\right. $

The set $ \{g_n\}$ is said to be complete if its span is dense in $ H$. One can show that $ \{g_n\}$ is complete if and only if the only element orthogonal to $ \{g_n\}$ is zero.

The set $ \{e_n\}$ is said to be a basis for the Hilbert space $ H$ if for every $ f \in H$, there exists a unique sequence of scalars $ \{c_n\}$ such that $ f=\sum_n c_n e_n$. A basis $ \{e_n\}$ is said to be orthonormal if it is orthogonal and $ \Vert e_n\Vert=1$, for all $ n$. It is standard that if $ \{e_n\}$ is an orthonormal basis for $ H$, then for all $ f \in H$, we have

$ f=\sum_n <f,e_n>e_n$

and

$ \Vert f\Vert^2=\sum_n \vert<f,e_n>\vert^2$

Next, we define unconditional bases and Riesz bases.

Definition: A basis $ \{e_n\}$ for the Hilbert space $ H$ is called unconditional if whenever $ \sum_n c_n e_n \in H$, $ \sum_n \vert c_n\vert e_n \in H$.

Definition: A subset $ \{g_n\}$ of the Hilbert space $ H$ is called a Riesz basis if there exists an orthonormal basis $ \{e_n\}$ for $ H$ and an isomorphism $ A$, such that $ Ag_n=e_n$, for all $ n$.

Definition: Let $ H$ be a Hilbert space and let $ \{g_n\}$ and $ \{h_n\}$ be subsets of $ H$. If $ \sum_n \Vert g_n-h_n\Vert^2 < \infty$, then $ \{g_n\}$ and $ \{h_n\}$ are said to be quadratically close.


next up previous
: Operators : Frames in Hilbert Space : Hilbert Spaces
Iyad Abu-Jeib