next up previous
: Frames : Frames in Hilbert Space : Bases, Orthogonal, Orthonormal, and

Operators

We begin by defining self-adjoint and positive operators.

Definition: Let $ A:H \longrightarrow H$ be an operator, then $ A$ is said to be:

  1. Self-adjoint if $ \langle Af,g \rangle=\langle f,Ag \rangle$, $ \forall f \in H$, $ \forall g \in H$.

  2. Positive if $ \langle Af,f \rangle \geq 0$, $ \forall f \in H$. If $ A$ is positive, then we write $ A \geq 0$.

  3. Normal if $ A^{*}A=AA^{*}$.

  4. Coercive (or bounded away from zero by $ \gamma$) if there exists a positive constant $ \gamma$ such that
    $ \Vert Af\Vert \geq \gamma \Vert f\Vert$, $ \forall$ $ 0 \neq f \in H$.

  5. Unitary if it is surjective and $ \langle Ux,Uy \rangle =
\langle x,y \rangle$, for all $ x,y \in H$.

Definition: For any function $ f$ and any real number $ a$, the dilation, translation, and modulation operators are defined, respectively, as

$ D_af(x)=\frac{1}{\sqrt{\vert a\vert}}f(\frac{x}{a})$, $ a \neq 0$

$ T_af(x)=f(x-a)$

$ E_af(x)=e^{2 \pi i a x} f(x)$.

It is easy to prove that the dilation, translation, and modulation operators are unitary from $ L^2(\mathbb{R})$ onto $ L^2(\mathbb{R})$.



Iyad Abu-Jeib