next up previous
: Bases, Orthogonal, Orthonormal, and : Frames in Hilbert Space : Frames in Hilbert Space

Hilbert Spaces

A Hilbert space is a complete inner product space. We shall denote the inner product associated with Hilbert spaces by $ \langle .,.\rangle$. Also, we shall denote the norm generated by this inner product by $ \Vert.\Vert$.

For every $ p \in \mathbb{R}^+$, we can define the following norm:

Definition: $ \Vert f\Vert _p=(\int_{\mathbb{R}}\vert f(x)\vert^p dx)^{1/p}$.

Now we define the following linear space, which we shall use in chapter 3:

Definition: The space $ L^p(\mathbb{R})$ is defined as follows:

$ L^p(\mathbb{R})=\{f: \Vert f\Vert _p < \infty\}$.

One can show that $ L^p(\mathbb{R})$ is a Banach space, for all $ 1 \leq p <
\infty$. A Banach space is a complete normed linear space.



Iyad Abu-Jeib