
Additional Complexity Classes

We recall first some facts we mentioned in the past:

1. If C is a deterministic time or space complexity class, then C = coC. This

means that C is closed under complements (complementations). In particulr,

coP = P .

2. If C is a nondeterministic space complexity class, then C = coC. This means

that C is closed under complements (complementations). In particular, CoNPS =

NPS.

3. NP = coNP iff there exists an NP − complete problem whose complement is

NP . In other words, NP = coNP iff NPC ∩ coNP 6= φ.

Remarks:

1. PS is the same as PSPACE and NPS is the same as NPSPACE.

2. Let C be a complexity class, then L ∈ C iff L ∈ coC.

3. IF A is a problem, then A ∈ C iff A COMPLEMENT is coC.

Theorem 1. L is NPC iff L is CoNP − complete.

Proof. We have to prove that

1. L ∈ coNP .

2. Every Q in coNP is polynomial-time reducible to L.

1. Since L is NP − complete, then L is NP and hence L is coNP .

2. Let Q ∈ coNP . Then Q ∈ NP . But, L ∈ NP − complete implies that there is

a polynomial-time reduction R from Q to L. The same reduction is a reduction

from Q to L.

Theorem 2. If CoNP − complete ∩NP 6= φ, then NP = coNP .
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Proof. Because of symmetry, it suffices to prove that coNP ⊆ NP . Now let

Q ∈ CoNP − complete ∩NP and let L ∈ coNP . We will prove that L ∈ NP . But,

L ∈ coNP and Q ∈ CoNP − complete∩NP implies that there is a polynomial-time

reduction R from L to Q. Also, Q ∈ NP implies that there is a NDTM N that

decides Q in polynomial-time. Now construct a NDTM N1 that first computes the

reduction R(x), where x is the input string. Then pass R(x) to N . This machine N1

decides L in polynomial-time. Hence, L ∈ NP .

Open question: Is NP = coNP ? The expected answer is no. So, people expect that

NP is not closed under complementation. In fact, they expect that NPC∩coNP = φ.

Also, they expect coNPC ∩NP = φ.

Remarks:

1. If P = NP , then coNP = coP = P = NP . Hence, if P = NP , then

NP = coNP .

2. It is possible that P 6= NP and NP = coNP .

3. There are problems in NP ∩ coNP that are not known to be in P . An

example of such problems is PRIMES which will be defined later.

Now we mention one more important problem.

Definition 3. The VALIDITY problem is the problem:

Given a BE in CNF , is it valid (satisfiable by all truth assignments)?

Nottice that VALIDITY is different than SAT COMPLEMENT. SAT

COMPLEMENT (also known as USAT) is the problem: given a BE, is

it unsatisfiable? In fact, SAT COMPLEMENT is the opposite of VALID-

ITY. Now since SAT is NPC, then SAT COMPLEMENT is coNPC, which

means that VALIDITY is also coNPC.
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Remark: VALIDITY and HAMILTON PATH COMPLEMENT are coNP−

complete, which means that they are also coNP and that every coNP prob-

lem is reducible to each one of them in polynomial time.

Now we define PRIMES

Definition 4. The PRIMES problem is the problem:

Given a positive integer N in binary, is it prime?

Theorem 5. PRIMES is in NP ∩ coNP .

Remarks: The above theorem implies that PRIMES is probably not NPC,

because if it is NPC, then since it is also coNP , then by the one of the

facts we mentioned at the beginning, we must have that NP = coNP which

is unlikely.


