Additional Complexity Classes

We recall first some facts we mentioned in the past:

- 1. If C is a deterministic time or space complexity class, then C = coC. This means that C is closed under complements (complementations). In particular, coP = P.
- 2. If C is a nondeterministic space complexity class, then C = coC. This means that C is closed under complements (complementations). In particular, CoNPS = NPS.
- 3. NP = coNP iff there exists an NP complete problem whose complement is NP. In other words, NP = coNP iff $NPC \cap coNP \neq \phi$.

Remarks:

- 1. PS is the same as PSPACE and NPS is the same as NPSPACE.
- 2. Let C be a complexity class, then $L \in C$ iff $\overline{L} \in coC$.
- 3. IF A is a problem, then $A \in C$ iff A COMPLEMENT is coC.

Theorem 1. L is NPC iff \overline{L} is CoNP-complete.

PROOF. We have to prove that

- 1. $\overline{L} \in coNP$.
- 2. Every Q in coNP is polynomial-time reducible to \overline{L} .
- 1. Since L is NP-complete, then L is NP and hence \overline{L} is coNP.
- 2. Let $Q \in coNP$. Then $\overline{Q} \in NP$. But, $L \in NP complete$ implies that there is a polynomial-time reduction R from \overline{Q} to L. The same reduction is a reduction from Q to \overline{L} .

PROOF. Because of symmetry, it suffices to prove that $coNP \subseteq NP$. Now let $Q \in CoNP - complete \cap NP$ and let $L \in coNP$. We will prove that $L \in NP$. But, $L \in coNP$ and $Q \in CoNP - complete \cap NP$ implies that there is a polynomial-time reduction R from L to Q. Also, $Q \in NP$ implies that there is a NDTM N that decides Q in polynomial-time. Now construct a NDTM N_1 that first computes the reduction R(x), where x is the input string. Then pass R(x) to N. This machine N_1 decides L in polynomial-time. Hence, $L \in NP$.

Open question: Is NP = coNP? The expected answer is no. So, people expect that NP is not closed under complementation. In fact, they expect that $NPC \cap coNP = \phi$. Also, they expect $coNPC \cap NP = \phi$.

Remarks:

- 1. If P = NP, then coNP = coP = P = NP. Hence, if P = NP, then NP = coNP.
- **2.** It is possible that $P \neq NP$ and NP = coNP.
- 3. There are problems in $NP \cap coNP$ that are not known to be in P. An example of such problems is PRIMES which will be defined later.

Now we mention one more important problem.

DEFINITION 3. The VALIDITY problem is the problem:

Given a BE in CNF, is it valid (satisfiable by all truth assignments)?

Nottice that VALIDITY is different than SAT COMPLEMENT. SAT COMPLEMENT (also known as USAT) is the problem: given a BE, is it unsatisfiable? In fact, SAT COMPLEMENT is the opposite of VALIDITY. Now since SAT is NPC, then SAT COMPLEMENT is coNPC, which means that VALIDITY is also coNPC.

Remark: VALIDITY and HAMILTON PATH COMPLEMENT are coNP-complete, which means that they are also coNP and that every coNP problem is reducible to each one of them in polynomial time.

Now we define PRIMES

DEFINITION 4. The PRIMES problem is the problem:

Given a positive integer N in binary, is it prime?

Theorem 5. PRIMES is in $NP \cap coNP$.

Remarks: The above theorem implies that PRIMES is probably not NPC, because if it is NPC, then since it is also coNP, then by the one of the facts we mentioned at the beginning, we must have that NP = coNP which is unlikely.