Additional Complexity Classes
We recall first some facts we mentioned in the past:

1. If C' is a deterministic time or space complexity class, then C' = coC'. This
means that C' is closed under complements (complementations). In particulr,
coP = P.

2. If C' is a nondeterministic space complexity class, then C' = coC'. This means
that C is closed under complements (complementations). In particular, CoNPS =
NPS.

3. NP = coNP iff there exists an NP — complete problem whose complement is
NP. In other words, NP = coNP iff NPC NcoNP # ¢.

Remarks:

1. PS is the same as PSPACE and NPS is the same as NPSPACE.
2. Let C be a complexity class, then L € C'iff L € coC.
3. IF Ais a problem, then A € C iff A COMPLEMENT is coC'.

THEOREM 1. L is NPC iff L is CoN P — complete.

ProOOF. We have to prove that

1. L € coNP.
2. Every @ in coN P is polynomial-time reducible to L.

1. Since L is NP — complete, then L is NP and hence L is coNP.
2. Let Q € coNP. Then Q € NP. But, L € NP — complete implies that there is

a polynomial-time reduction R from @ to L. The same reduction is a reduction
from Q to L.

THEOREM 2. If CoNP — complete N NP # ¢, then NP = coNP.
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PROOF. Because of symmetry, it suffices to prove that coNP C NP. Now let
Q € CoNP — complete N NP and let L € coNP. We will prove that L € NP. But,
L € coNP and Q € CoNP — complete N N P implies that there is a polynomial-time
reduction R from L to Q). Also, Q € NP implies that there is a NDTM N that
decides ) in polynomial-time. Now construct a NDTM N; that first computes the
reduction R(x), where x is the input string. Then pass R(x) to N. This machine N,
decides L in polynomial-time. Hence, L € NP. O

Open question: Is NP = coN P? The expected answer is no. So, people expect that
N P is not closed under complementation. In fact, they expect that NPCNcoN P = ¢.
Also, they expect coNPC N NP = ¢.

Remarks:

1. If P = NP, then coNP = coP = P = NP. Hence, if P = NP, then
NP = coNP.

2. It is possible that P # NP and NP = coNP.

3. There are problems in NPNcoNP that are not known to be in P. An
example of such problems is PRIMES which will be defined later.

Now we mention one more important problem.

DEFINITION 3. The VALIDITY problem is the problem:

Given a BE in CNF, is it valid (satisfiable by all truth assignments)?

Nottice that VALIDITY is different than SAT COMPLEMENT. SAT
COMPLEMENT (also known as USAT) is the problem: given a BE, is
it unsatisfiable? In fact, SAT COMPLEMENT is the opposite of VALID-
ITY. Now since SAT is NPC, then SAT COMPLEMENT is coN PC, which
means that VALIDITY is also coNPC.
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Remark: VALIDITY and HAMILTON PATH COMPLEMENT are coN P—
complete, which means that they are also coNP and that every coN P prob-

lem is reducible to each one of them in polynomial time.
Now we define PRIMES

DEFINITION 4. The PRIMES problem is the problem:

Given a positive integer N in binary, is it prime?

THEOREM 5. PRIMES is in NP NcoNP.

Remarks: The above theorem implies that PRIMES is probably not NPC,
because if it is NPC, then since it is also coNP, then by the one of the
facts we mentioned at the beginning, we must have that NP = coN P which

is unlikely.



