DEFINITION 1. The time required by a Turing machine M on an input x is the number of steps to halting. If the machine does not halt; i.e. $M(x) = \nearrow$, then the time is ∞ .

DEFINITION 2. Let f be a function from the nonnegative integers to the nonnegative integers, then we say that M operates within time f(n) if for any input x, the time required by M on x is less than or equal to f(|x|).

DEFINITION 3. **TIME**(f(n)): Complexity class of languages that are decided by multistring (k - string) (k - tape) Turing machines operating within time f(n).

DEFINITION 4. **NTIME**(f(n)): Complexity class of languages that are decided by k-string NDTM's operating within time f(n).

DEFINITION 5. Suppose that for a k-string Turing machine M_k and an input x,

$$(s, \triangleright, x, \triangleright, \epsilon, ..., \triangleright, \epsilon) \xrightarrow{M_k^*} (H, w_1, u_1, ..., w_k, u_k),$$

where H is one of the halting states. Then the space required by M_k on x is $\sum_{i=1}^k |w_i u_i|$. If M_k is with input and output, then the space required is: $\sum_{i=2}^{k-1} |w_i u_i|$.

DEFINITION 6. Let $f: \mathbb{N} \longrightarrow \mathbb{N}$ and let M be a Turing machine; we say M operates within space bound f(n) if the space required for any input x is less than or equal to f(|x|).

DEFINITION 7. SPACE(f(n)): Languages decided by k-string deterministic Turing machines with input and output that operate within space bound f(n).

DEFINITION 8. NSPACE(f(n)): Languages decided by k-string nondeterministic Turing machines with input and output that operate within space bound f(n).

Definition 9. In the following, $k \in \mathbb{N}$.

- 1. $P = TIME(n^k) = TIME(poly) = \bigcup_{j \in \mathbb{N}} TIME(n^j)$.
- 2. NP = NTIME (n^k) = NTIME(poly) = $\bigcup_{j \in \mathbb{N}}$ NTIME (n^j) .
- 3. $EXP = TIME(2^{n^k}) = TIME(exp) = \bigcup_{j \in \mathbb{N}} TIME(2^{n^j}).$
- 4. NEXP = NTIME (2^{n^k}) = NTIME(exp) = $\bigcup_{j \in \mathbb{N}}$ NTIME (2^{n^j}) .
- 5. PSPACE = SPACE (n^k) = SPACE(poly) = $\bigcup_{j \in \mathbb{N}}$ SPACE (n^j) .
- 6. NPSPACE = NSPACE (n^k) = NSPACE(poly) = $\bigcup_{i \in \mathbb{N}}$ NSPACE (n^j) .
- 7. L (or LOGSPACE) = SPACE($\log n$).
- 8. NL (or NLOGSPACE) = NSPACE($\log n$).

DEFINITION 10. P: set of all languages decidable by Turing machines in polynomial times (i.e. TIME (n^k) , $k \ge 1$).