Quiz 2

Instructions: Show your work and explain every step.

- (1) (3 points) Let A be a language. Prove that A is decidable iff \overline{A} is decidable.
- (2) (8 points) Decide if the following are true or false.
 - (a) Every decidable language is Turing-recognizable.
 - (b) For Turning machines, does not accept means reject.
 - (c) Multi-tape Turing machines are equivalent to single tape Turing machines.
 - (d) Non-determinist Turing machines are more powerful (i.e. recognize more languages) than deterministic Turing machines.
 - (e) If L is Turing recognizable, the \overline{L} is Turning-recognizable.
 - (f) A decidable problem is solvable by computers (i.e. has an lgorithm).
 - (g) E_{CFG} is decidable while E_{TM} is not.
 - (h) EQ_{CFG} is undecidable.
- (3) (4 points) Let $S = \{L \mid L \text{ is Turing-recognizable}\}$ and $\overline{S} = \{L \mid L \text{ is Turing-recognizable}\}$
 - $\{L \mid \overline{L} \text{ is Turing-recognizable}\}.$
 - (a) Find a bijection from S to \overline{S} .
 - (b) Use the fact that $S \cup \overline{S}$ is countable, to prove there is a non Turing-recognizable language.
- (4) (a) (3 points) Fill out the blanks:
 A language is iff both it and its complement are
 Turing-recognizable.
 - (b) Use the first part to show that $\overline{A_{TM}}$ is not Turing-recognizable.
- (5) (2 points) Give the domain and the target for the tansition function δ of deterministic Turing machines.