## Quiz 1

Instructions: Show your work and explain every step.

- (1) Give the mathematical definition of DFA.
- (2) Give the mathematical definition of NFA.
- (3) Given that L is a regular language recognized by the DFA  $M = (Q, \Sigma, \delta, q_0, F)$ . Give the 5-tuple of a DFA (write its elements in terms of the elements of M) that recognizes  $\overline{L}$ . Also, show by example that the above does not work for NFA.
- (4) Use the above question (i.e. the complement of a regular language is regular) and the fact that the union of two regular languages is regular to prove that if  $L_1$  and  $L_2$  are regular, then  $L_1 \cap L_2$  is regular.
- (5) Determine whether the following are true or false:
  - (a) DFA are as powerful as NFA (i.e. NFA and DFA recognize the same languages).
  - (b) The language  $\{a^nb^n \in \{a,b\}^* \mid n \ge 0\}$  is regular.

(6) Given the following NFA

|               | $\delta$ | 0             | 1         | $\epsilon$     |
|---------------|----------|---------------|-----------|----------------|
|               | $q_0$    | -             | $q_1$     | $q_1$          |
|               | $q_1$    | $\{q_0,q_4\}$ | 1         | $\{q_2, q_3\}$ |
|               | $q_2$    | ı             | $\{q_4\}$ | ı              |
|               | $q_3$    | $q_4$         | -         | -              |
|               | $q_4$    | -             | -         | $q_3$          |
| $F = \{q_2\}$ |          |               |           |                |

 $F = \{q_3\}$ 

- (a) Is  $\epsilon$  recognized by the NFA?
- (b) What is  $\delta(q_0, 0)$ ?
- (c) What is  $\delta(q_0, \epsilon)$ ?