Project
Due Friday, May 11, 2007
Remark: I may add more to the project later. Some or all of those additions (if they are added) may be for extra credit. For example, when we cover cookies and sessions, I may ask you to add them. You may find some of the following material useful: the alumni files I have on CSIT 207 website Fall 2006 (that has login information), what’s new examples I have on this website and on CSIT 207 website from last semester (those tell you how to process a directory and its subdirectories and how to ignore files or directories whose names begin with a dot), the example on how to access files from non-public directories.
How to submit the project:

I. You’ll have to provide me with a link to where the project is on your server. No page should be changed after you submit the project. If you change a page, you may get zero.

II. You’ll have to set up an appointment in which all members of your group have to come and in which I may ask every one questions about any part of the project. Although you should distribute the work evenly between the members of the group, each member must be familiar with the work of the other members, must be able to answer questions about it, and must know how to do it. The presentation time (which should be done in my office) is 30 minutes. The presentation (which should be arranged with me) must be at least two days before the presentation takes place.
Here is a description of the project:

1) Have a table called users with 5 fields: username of type varchar(15), password of type varchar(40) (the password should be encrypted using the sha or sha1 function), date in Unix timestamp, formatted_date in the format: April 21, 2007 11:12:35 PM EDT, and ip for the IP address.

2) Have two links on the first page which should be called index.php. One of the links is for users who already have accounts to log in. Let’s call this page login.php. The other link is for new users to register. Let’s call this link register.php. The file index.php and all other php files mentioned below must be stored in a directory called Project.
3) The login.php page (must process itself) has a form that contains two input fields for a username and a password. If the user doesn’t enter both the username and the password and submits the form, display a message asking him/she to enter both. Make sure to use trim and stripslashes when you process this input and all fields input mentioned below. When the user enters both the username and the password and submits the form, check if they (the username and the password) exist and match in the database. (The password should be encrypted in the database and the username should be a primary key.) If they don’t match, display a message asking the user to enter again. But, make sure in that case to keep the username in its field and erase the password from its field. If they match enable the user to login in. Logging in means the user must see the following links (displayed by login.php when the username and the password match): see images, upload images. The first link links to a page called see_images.php and the second link links to a page called upload_images.php.
4) The register.php page (must process itself) should have two input fields. One for the username and one for the password. When the user enters both, use trim and stripslashes, and check if the username is in the database. If it’s there, display a message asking the user to choose another one and erase the password from the form (keep the username). If the user enters a password of length less than 5, display a message asking the user to enter a password of length at least 5. In that case, keep the username in the field and erase the password from its field. If the user enters a username that doesn’t exist and a password of length greater than 4, store the username, the password, the timestamp date, the formatted date (see the format above), and the IP address in the database, and display a message thanking the user. Also, in that case send an email message to you to notify you that a new user has registered. Put in the message the username, formatted date, and IP address, but not the password.

5) Page see_images.php lists all readable images (as links) in the non-public directory temp2 which has the path /home/username/temp2/. You should list all images in that directory and in any accessible directory inside no matter how deep that directory is (don’t make any assumptions on the subdirectories and their subdirectories and their subdirectories, etc). Use a recursive function to do that. But, make sure no file or directory whose name begins with a dot is processed or displayed. When the user clicks on the link of any image (make the name of the link the name of the image), the user should be prompted to save or open the image or cancel. This page must be accessible only by valid users. That means if someone tries to access it directly, that person should not succeed. Here is how to do that: pass the username via a hidden field from the login.php file, and check if that username is in the database. If it’s there, display the images. If it is not there, display an error message.
6) Page upload_images enables the user to upload images (permitted types – ignore case: jpg, jpeg, gif, png, bmp) and display on the page what the permitted types of images are (in order for the user not to try to upload non-permitted types). The images must be uploaded to a directory called uploaded_images of the temp2 directory mentioned above. This page must also be password protected. Here ask the user to enter only the password (pass the username via a hidden field from the login.php page; remind me to show you how to do that in class; Q: why not pass it via the link? Ask me that question in class) and match that password with the username passed from login.php. If they match, display the upload form. If they don’t math, don’t display it and display an error message telling the user the username and the password don’t match.
More Remarks:

1) Use only $_POST to get the inputs from all the fields above except the field of type file.

2) The connection to the database (the connection statement only that includes the username and the password) should be stored in a non-public file in a non-public directory and include that one in any file in which you need database connection using the function require_once.

PAGE
3

