Including Multiple Files

(1) You can split your PHP program if it’s long (or for whatever reason) to more than one file. In other words, you can include PHP files or other HTML (or text) files in a PHP file. To do that you can use the functions include and require. In older versions of PHP, these two functions were used differently. These days they are used to take the contents of the included/required file and putting it in the file using the functions (at the same location where they are used).
(2) The functions include and require are now the same when there are no problems, but they are different when they don’t work properly (they can’t include the file). If include doesn’t work properly, a warning will be displayed in the browser and the rest of the code/script will continue to run. On the other hand, if require does not work properly, an error message will be displayed and the script will halt. For this reason, some recommend using the require function for sensitive files (Such as files that include database access, email, users, etc), and use include for other files.
(3) Functions include/require are used for ease of maintenance, security (files that contain sensitive data such as database access should not be stored in public directories and thus use include/require to include them), or ease of user navigation.

(4) If file2 is included in file1, then file2 becomes as if it’s part of file1. Thus, variables defined in file2 become available in file1, and variables defined in file1 before the include/require statement (that includes file2 in file1) become variables to file2 as well.
(5) Functions include_once and require_once are used to make sure the included file will be included only once.

(6) Since functions include, require, include_once, require_once are PHP functions, you cannot use these functions in HTML files. They should be used in PHP files, but again you can include HTML files (e.g. you can use include(“included.html”) in a PHP file, but not the other way round. To include PHP files in HTML files, you can’t use the PHP include, require, include_once, require_once functions, but there is another way to do it. It’s by using SSI commands (i.e. you can use SSI commands to include a PHP file in an HTML file).
Handling Forms in PHP
(1) The action attribute of the form is the one that specifies what to do with the forma data. The form data can be emailed (using method=”mailto: …”) to someone or it can be sent to another page (CGI, PHP, etc) to process it or store it (e.g. in a MySQL database or in a file).

(2) The method attribute of a form specifies how the data is sent to the page that handles the form. The get method sends the submitted data to the receiving page as pairs of names and values appended to the URL.

Advantages of the get method: the resulting page can be bookmarked. You can also click the back button to go back to the get page, and you can reload it with no problems. Those things are not true for the post method.

Disadvantages of the get method: There is limitation on how much data can be sent and it’s less secure because the data is shown in the browser (the URL of the page).

(3) The fieldset tag draws a box around the form.
(4) The legend tag is used to add a title to the form (at the top).

(5) In order for radio buttons to behave as a group (i.e. only one of them can be chosen), you must give them the same name.

(6) Suppose that there is an input (text, textarea, radio button, check box, etc) with the name Abc. The PHP page that receives the form data assigns the value of that input (what the user entered for that field) to a variable called $_REQUEST[‘Abc’]. $_REQUEST stores all the date sent to a PHP page by the get/post methods or by cookies. It’s available since Version 4.1. In older versions of PHP, such a value was stored in variable called $Abc. You can still use that by turning register_globals on. When you use the POST method, you can use $_POST[‘Abc’] instead of $_REQUEST[‘Abc’], and when you use the GET method, you can use $_GET[‘Abc’] instead of $_REQUEST[‘Abc’]. If there are two input fields in the form with the same name, then the value of the last one is the one that will be stored. For example, if there are two input fields in the form both having the name CDE, then the value of $_REQUEST[‘CDE’] will be the value of the second field that has the name CDE. If you want to give two input fields or more the same name, then include brackets after the name (e.g. CDE[]). In this case, the values of all of those fields will be stored in an array called $_REQUEST[‘CDE’] (and $_POST[‘CDE’] if you’re using the POST method or $_GET[‘CDE’] if you’re using the GET method). To access those values, see how to access arrays.
(7) When you submit a form where the data contains single/double quotes, a backslash is added to each one (to help avoid problems in databases or HTML). These are called Magic Quotes. You can fix that by using the function stripslashes. This function has an inverse called addslashes.
(8) To remove leading and trailing whitespace from a variable, use the function trim.

(9) You should always check the data entered by the user. This is called validating the data. You can use JavaScript to do that. You can also use PHP.
(10) The function isset tests if a variable has a value (including FALSE, 0, or empty string). Thus, it returns true if the variable has a value of 0 or the empty string or false, but it returns false if it has no value or if it’s null. But since isset returns TRUE if the value of the variable is the empty string, that means it is not a good idea to use isset with inputs from text fields or text areas. The solution for such kinds of inputs is to use the empty function. It checks if a variable has an empty value (FALSE, NULL, 0, or an empty string). The function is_numeric is used to test if the value of a variable is a number. The function strlen of a variable returns the number of characters in a string.
