Lecture 2
One-dimensional Arrays in PHP:

(1) PHP supports indexed (those that have integer indices/keys; they start at 0 unless you specify otherwise) and associative arrays (have string indices/keys). If you supply a floating-point key (index), it will be converted to an integer (the decimal point and the fraction will be removed). See Example array_1.src. If the index/key is a string, you can access it without quotes or with single quotes or double quotes. If you assign a floating-point index/key such as 2.5, then that index will be taken to be 2. E.g. if $a is an array, the $a[2.7] is the same as $a[2] and $a[2.1] is the same as $a[2], etc.
(2) See Example array_2.src for initializing arrays, using foreach, accessing the indices, and using Function count.
(3) See Example array_3.src for using the range function.
(4) Sorting arrays:
(a) Function sort sorts the array, but it resets the keys (indices) so that they become integers and start at 0.
(b) Function asort sorts the array, but it keeps the keys (indices).
(c) Function ksort sorts the array with respect to the keys (indices).
(d) Function rsort is like Function sort, but it sorts in descending order instead of ascending order.
(e) Function arsort is like Function asort, but it sorts in descending order instead of ascending order.
(f) Function krsort is like Function ksort, but it sorts in descending order instead of ascending order.
(5) See Example sorting_arrays.src for sorting arrays.
(6) To declare an empty array $a, you do that as follows:
$a = array();
NOTE: To see the PHP code, I included .src file for each PHP file. To access the .src file, click on it, then click “Open”.
Useful Functions Related to Arrays:

(1) See (above) the functions for sorting arrays.

(2) array range(integer start, integer end, integer step)

This function is used to create an array of integers or characters. The third argument is optional. E.g.

$a = range(20,50);

$b = range(20,50,5);

$c = range(‘c’, ’z’);

(3) value min(array arrayname)
Returns the smallest element of the array called arrayname

value min(value a1, value a2, …)

Returns the smallest argument (it must have at least two arguments).

(4) value max(array arrayname)

Returns the largest element of the array called arrayname

value max(value a1, value a2, …)

Returns the largest argument (it must have at least two arguments).

(5) boolean in_array(value a, array arrayname)
Returns TRUE if a is an element in arrayname and FALSE if not.

(6) list($a1,$a2,…) = arrayname
It assigns the first element of arrayname to $a1, the second to $a2, etc.

(7) integer count(array arrayname)
Returns the number of elements in arrayname.
(8) integer sizeof(array arrayname)

Returns the number of elements in arrayname.
(9) value array_sum(array arrayname)

Returns the sum of elements of arrayname

(10) array array_values(array arrayname)
Returns an array with the same elements as arrayname but whose indices (keys) are integers start at 0.

(11) value array_search(value a, array arrayname)
Returns the index (key) of a in arrayname if a is an element of the array and FALSE otherwise.

(12) array array_reverse(array arrayname, boolean keep_keys)
Returns the array in which the elements of arrayname are reversed. The second argument is optional. If it’s set to true, the keys (indices) of the elements will be preserved (i.e. every element in arrayname will keep its key in the returned array). If it’s set to false, the indices (keys) will be reset in the returned array (they’ll start at 0).

(13) value array_rand(array arrayname)
Returns a random key (index) from arrayname.

(14) array_push(array arrayname, value a1, value a2, …)
Adds a1, a2, … to arrayname (append them to the array from the end).
(15) array array_merge(array arrayname1, array arrayname2, …)

Merges arrayname1, arrayname2, …

Are the indices preserved if they are integers? Are they preserved if they are strings? Check that.

Example on merging arrays: The output of

$a1 = range('A','D');

$a2 = range('a','f');

$a3 = range('5','9');

$b = array_merge($a1,$a2,$a3);

foreach ($b as $v)

 echo "$v ";

is

A B C D a b c d e f 5 6 7 8 9

(16) array array_keys(array arrayname)
Returns the array whose elements are the keys (indices) of arrayname.

Example on getting keys/indices of an array:
Suppose $a is an array. To get the keys/indices of the elements of $a and assign them to array called $keys, you write: $keys = array_keys($a); For example the output of the following:

$a = array("ab" => 77, "gh" => 88, "yz" => 99);

$b = array_keys($a);

foreach ($b as $v)

 echo "$v ";

is

ab gh yz

(17) boolean array_key_exists(value k, array arrayname)
Returns TRUE if k is a key in arrayname and FALSE otherwise.

(18) array array_flip(array arrayname)
Returns the array whose elements are the keys (indices) of arrayname and whose keys (indices) are the elements of arrayname.

(19) Array array_combine(array keys_array, array values_array)
Returns the array whose elements are the elements of values_array and whose keys (indices) are the elements of keys_array.

(20) print_r(array arrayname)
Prints the elements of arrayname with their keys (indices).

(21) unset($array[pos]): removes the element of the array whose key/index is pos no matter whether pos is an integer index or a string index.

E.g. if $a is an indexed array with more than 2 elements and $b an associate array (string indices/keys) with an element whose index/key is “alpha’, then you can delete the third element of $a and the ‘alpha’ element of $b as follows: unset($a[2]); unset $b[‘alpha’].

Example:

<?

echo "\$a = array(5,7,8)
";

$a = array(5,7,8);

unset($a[1]);

echo "After unset(\$a[1]), array \$a is:
";

//echo count($a), "
";

print_r($a);

echo "
";

echo "\$b = array('x' => 6, 'y' => 7, 'z' => 8)
";

$b = array('x' => 6, 'y' => 7, 'z' => 8);

unset($b['y']);

echo "After unset(\$b['y']), array \$b is:
";

//echo count($b), "
";

print_r($b);

?>

Output:

$a = array(5,7,8)
After unset($a[1]), array $a is:
Array ([0] => 5 [2] => 8)
$b = array('x' => 6, 'y' => 7, 'z' => 8)
After unset($b['y']), array $b is:
Array ([x] => 6 [z] => 8)

(22) boolean array_key_exists(k,a): Returns true if k is a key in array a and false if not.
Adding Elements to Arrays:

Suppose you have a one-dimensional array $a whose keys are integers. To add a new element (say the element is $e) to the array, you do the following: $a[] = $e. The index of the new element will be the last index + 1. If the array is originally empty (i.e. there were no elements in the array before you added this new element), then the index of the new element will be 0.

Example:

$a = array();

$a[] = 5;

$a[] = 7;

$a[] = 9;

In this case, the element 5 will have index of 0, 7 will have index of 1, and 9 index of 2.

Example:

$a = array();

$a[2] = 5;

$a[] = 7;

$a[] = 9;

In this case, the element 5 will have index of 2, 7 will have index of 3, and 9 index of 4.

Example:

$a = array();

$a['b'] = 5;

$a[] = 7;

$a[] = 9;

In this case, the element 5 will have index of b, 7 will have index of 0, and 9 index of 1.

Multidimensional Arrays:

You can declare an element of an array to be an array. In that case, you get a multidimensional array.
Example:

Consider the following two dimensional array in which the first column represents usernames and the second column represents passwords:

	abc
	123

	def
	456

	ghi
	789

1) Store the above table in a two-dimensional array in which the indices/keys of the rows are integers start at 0 and the column indices are also integers start at 0.

Solution 1:

$a = array();

$a[0] = array();

$a[0] [0] = "abc"; $a[0][1] = 123;

$a[1] = array();

$a[1] [0] = "def"; $a[1][1] = 456;

$a[2] = array();

$a[2] [0] = "ghi"; $a[2][1] = 789;

Solution 2:

$a = array();

$a[0] = array("abc",123);

$a[1] = array("def",456);

$a[2] = array("ghi",789);

Solution 3:

$a = array();

$a[] = array("abc",123);

$a[] = array("def",456);

$a[] = array("ghi",789);

Note that the row indices are missing in the last three lines.
2) Store the above table in a two-dimensional array in which the indices/keys of the rows are integers start at 1 and the column indices are also integers start at 1.

Solution 1:

$a = array();

$a[1] = array();

$a[1] [1] = "abc"; $a[1][2] = 123;

$a[2] = array();

$a[2] [1] = "def"; $a[2][2] = 456;

$a[3] = array();

$a[3] [1] = "ghi"; $a[3][2] = 789;

Solution 2:

$a = array();

$a[1] = array(1 => "abc",123);

$a[2] = array(1 => "def",456);

$a[3] = array(1 => "ghi",789);

Solution 3:

$a = array();

$a[1] = array(1 => "abc",123);

$a[] = array(1 => "def",456);

$a[] = array(1 => "ghi",789);

Note that the row indices are missing in the last two lines.
3) Store the above table in a two-dimensional array in which the indices/keys of the rows are integers start at 0 and the index of the first column is “username” and the index of the second column is “password”.

Solution 1:

$a = array();

$a[0] = array();

$a[0] ["username"] = "abc"; $a[0]["password"] = 123;

$a[1] = array();

$a[1] ["username"] = "def"; $a[1]["password"] = 456;

$a[2] = array();

$a[2] ["username"] = "ghi"; $a[2]["password"] = 789;

Solution 2:

$a = array();

$a[0] = array("username" => "abc", "password" =>123);

$a[1] = array("username" => "def", "password" => 456);

$a[2] = array("username" => "ghi", "password" => 789);
Solution 3:

$a = array();

$a[] = array("username" => "abc", "password" =>123);

$a[] = array("username" => "def", "password" => 456);

$a[] = array("username" => "ghi", "password" => 789);

Printing Two Dimensional Arrays:

To print a two dimensional array neatly each row on a different line (assume the array is called $a), you do the following:

echo "<center><table width='40%' border='1'>";

foreach ($a as $row)

{

 echo "<tr>";

 foreach ($row as $col)

 echo "<td>$col</td>";

 echo "</tr>\n";

}

echo "</table></center>\n";

If you need to print the keys/indices of the rows and of the columns, here is what you can do:

echo "<center><table width='40%' border='1'>";

foreach ($a as $r => $row)

{

 echo "<tr>";

 foreach ($row as $c => $col)

 echo "<td>a[$r,$c]: $col</td>";

 echo "</tr>\n";

}

echo "</table></center>\n";

See the examples multi_dim_arrays_1.src and multi_dim_arrays_2.src.
The Server Array (Environment Variables):

1) $_SERVER['HTTP_USER_AGENT']: Returns the type of browser or user agent that used to access the current script.
2) $_SERVER['HTTP_REFERER']: Returns the URL of the referring page to the current one.

3) $_SERVER['REQUEST_URI']: Returns the URI (script name and arguments appended) from the current URL.
4) $_SERVER['PHP_SELF']: Returns the filename of the script relative to the document root. It returns the URI (script name WITHOUT arguments appended) from the current URL. To see the difference between REQUEST_URI and PHP_SELF, type for example ?a=5&b=7 in the browser after the URL.
5) __FILE__ : Returns the full path of the script (including the name of the script). Be careful this is a constant, so you can’t include it in quotes when you want to print it.
6) $_SERVER['REMOTE_ADDR']: Returns the IP address of the user requesting the script.
7) $_SERVER['DOCUMENT_ROOT']: Returns the full path of the website's document root.
8) $_SERVER['SERVER_NAME']: Returns the name of the web server that is processing the request.
If statement, Loops, break, continue, try, throw, and switch statements, and the conditional operator:

The if statement, for loop, while loop, do while loop, continue, break, try, and throw statements in PHP are similar to those in C++. The switch statement is also similar, but it’s more flexible (e.g. the cases/labels can be strings in the PHP switch statement). In addition to the above loops, PHP has the foreach loop which is used for accessing arrays. The conditional operator ?: in PHP is also the same as in C++.
Math Functions and PI:

1) M_PI

Used for the number ∏ (Pi).

2) number abs(number value)

Unlike C++, abs is used for floating-point numbers in addition to integral ones.

3) string base_convert(string value, int base, int new_base)
Converts value from base to new_base.

4) integer ceil(double value).
5) double round(double value, integer precision)

Returns value rounded to the nearest integer. The optional precision argument sets the number of digits you want to the right of the decimal point.

6) double pow(double base, double power)

Returns basepower.

7) double exp(double power)

Returns epower.
8) double log(double value)

Returns ln(value).

9) double log(double value, double base)

Returns logbase (value).
10) double log10(double value)

Returns log10 (value).
11) double sqrt(double value).

12) int1 % int2
Returns the remainder when int1 (integral value) is divided by int2 (integral value). This is not used for floating-point numbers.

13) double fmod(double x, double y)
Returns the remainder when x is divided by y.

14) Trig functions: sin, sinh, asin, asinh, cos, cosh, acos, acosh, tan, tanh, atan, atanh.

Random Numbers:

1) double lcg_value()
Returns a number between 0 and 1 using the linear congruential generator (LCG) algorithm.

2) Integer rand()

Returns a number between zero and getrandmax() (see below).

3) integer rand(integer lowest, integer highest)

Returns a number between lowest and highest.

4) integer getrandmax()
Returns the maximum random number returned by the rand function.

5) integer mt_getrandmax()

Returns the maximum random number returned by the mt_rand function.

6) Integer mt_rand()

Returns a number between zero and mt_getrandmax() using the Mersenne Twister (MT) algorithm (faster and returns numbers with a much better distribution).

7) integer mt_rand(integer lowest, integer highest)

Returns a number between lowest and highest using the Mersenne Twister algorithm.
PAGE
4

