Sessions
(1) HTTP Web protocol is stateless (connection between the server and the browser is lost after a transaction; both of them can’t remember transactions from one session to a next one). Thus, when a user accesses pages on the same website, HTTP does not know if the requests are coming from the same user.
(2) That’s a problem. E.g. for shopping carts, bank transactions (you don’t want to keep asking the user every time he/she moves from one page to another after logging in the first time to log in again and again.

(3) Cookies and sessions are used to remember past queries. They often work together for saving a state. That is they are used to track a user during a session on a website. Thus, by using them, users can log in and log out, and when they are logged in, they can be tracked. Sessions are more useful than cookies used alone because if cookies are not supported or are disabled by the user, sessions still work because they can function without cookies.
(4) Cookies are small text/flat files used to store small amounts of information on the user’s browser. They are sent from the server to the browser, and they are part of HTTP headers.
(5) Sessions can store much more information than cookies and they can store information on the server. They store information on the server in a flat file. You can store the information in a database instead of a flat file. So the cookie size limitation is not a factor in sessions and also because the information is stored on the server, you can make the session store sensitive information on the server (unlike cookies).
(6) PHP gives every session a unique random hexadecimal number called SESSION ID. The SESSION ID is either stored on the client’s side in a cookie that expires (default case) at the end of the session (but it can be extended), or it is passed through URLs, or through hidden fields in a form using GET/POST method. But the most secure method is using cookies. The SESSION ID is the only information stored on the client’s side (in addition to the cookie path, domain, expiration date, and secure/insecure transmission). The default name of the cookie storing the SESSION ID is “PHPSESSID” (this is also called session name) and the value (content) of the cookie is SESSION ID. E.g. 751a32322555e697997de4102c143ecb
The above name of the cookie is the default one. You can change this default name and create a new default one by using the php.ini file or function session_name() (see below).
(7) You can get the session ID using the function session_id() which returns the session ID or by using the constant SID, but this constant is empty when cookies are enabled. That’s why when we checked in current_alumni_sessions.php example (the log in page) if cookies are enabled, we appended SID (not session_id()) to the URL when we did the redirection (we redirect because when you set a cookie, you can’t tell right away if the cookie was set). If cookies are disabled, then SID won’t be empty and when we visit the page the second time via redirect (header(“…”)), $_GET[‘PHPSESSID’] will have a value and that means it will be set. Thus, if cookies are disabled, the second time we visit the page via redirect (when we do redirect, SID must be appended to the URL and ?), $_COOKIE["PHPSESSID"] will be not set and $_GET["PHPSESSID"] will be set. That’s how to tell cookies are disabled.
(8) You can change the session ID by using the function session_regenerate_id(). If you pass true as an argument to this function, it will delete the old session file. If you don’t pass arguments or if you pass false (the default), the old session file will not be deleted, but it has to be accessed using the new session ID. This function is useful for security reasons (e.g. if the old session ID is hijacked).

(9) You don’t have to set the SESSION ID cookie manually when you’re using sessions. That’s done automatically. But, you can modify the default expiration date, path, domain, and secure and set them manually as follows:
session_set_cookie_params($life_time,$path,$domain,$secure);

You need to add that to every page that should be part of the session, and you should call this function before you call session_start(). If you don’t, the specifications in the page you close the browser on will be the ones to take effect after you close the browser. This is because the effect of this function lasts only for the duration of the script.
When you specify $life_time, (unlike expiration date for cookies) you write it without time(). If you use time in it, the expiration date will be the default one (which is usually the end of the session). For example, if you want your session to expire after 24 hours, you make the life time to be 60*60*24 (remember we set the expiration date for cookies as time()+60*60*24 if the cookie is to expire after 24 hours; i.e. we use time(for cookies). Note also that you have to use this function (if you want to use it) before you start the session.
Note that you can change the default life time of the session (which is the session period), the path, the domain, and the SESSION ID cookie name, and make default ones by using php.ini file.

You can also review those parameters as follows:

$array = session_get_cookie_params();

The function session_get_cookie_params returns an array with the expiration date, valid path, valid domain, secure attributes of the cookie.

(10) If a user has cookies disabled or the browser does not support cookies, the SESSION ID may be passed automatically through URLs (it will be added to the URL).

Example:

http://www.cs.fredonia.edu/abu-jeib/teaching/Fall_06/207/Examples/Lec18_Files/members_alumni_sessions.php?PHPSESSESSION ID=751a32322555e697997de4102c143ecb
But, the behavior of PHP pages may differ in this case than the case when cookies are enabled. For example, try to login and then visit the next page and may be the next one and then go back to the log in page. You’ll see the difference. Either, you’ll be promoted to log in again or you’ll find out the page is expired (if you click refresh, you should be ok). That’s why some people advise to check if cookies are enabled first. If not, they refuse to let him log in, and they issue a message to the user asking him/her to enable cookies.
But if cookies are disabled, the SESSION ID needs to be appended to every page in the session. If not, the behavior may not be as you want.
(11) You can manually pass the SESSION ID through URLs by following the URL that will be using the SESSION ID with the SESSION ID number. E.g. to pass SESSION ID with the link of the page above, write

<a href=″members_alumni_sessions.php?<? echo strip_tags(SID); ?>″>

(12) You can make PHP automatically add SESSION ID to the URL instead of using the PHPSESSID cookie. You do that by setting on “session_use_trans_session ID” in php.ini, or by setting session.use_cookies to 0.
(13) If the SESSION ID is passed through the URL, you can get it also by using $_GET["PHPSESSID"].

(14) The SESSION ID allows you to use (often called register) session variables. Those variables are stored on the server.

(15) You can see the variables stored in the session. E.g. assume one of them is called username, use $_SESSION[‘username’] or $HTTP_SESSION_VARS[‘username’] (in older versions of PHP).

(16) Session name: default PHPSESSID. You can call it something else by using session_name(). This function returns the current session name. To change the name, just provide the new name as an argument to the function. In that case, every page in the session must call the function before session_start().

(17) For simple sessions, you need to do the following (those don’t have to be on the same page; in fact, they usually don’t):

(a) Start the session using session_start(). If there is no session in progress, this function will create one. If there is one in progress, it will load the registered variables of the session (i.e. resume the current session). You can make PHP start a session automatically when someone visits your website. That’s done by using session.auto_start in php.ini or by calling the function init_set(). This function is used to override (change) the configuration (in php.ini) for the duration of the session. If the session ID is sent by a cookie, you must call session_start() before you send any output to the browser unless you use ob_start(). But in any case, you must use session_start() before you use the $_SESSION array.
(b) Register session variables. E.g.

$_SESSION[‘username’] = ‘abu-jeib’;

You can check if a variable is registered by using isset(). E.g.

if (isset($_SESSION[‘username’]))

(c) Use session variables (when you need that and if you need it).

(d) Deregister variables when you no longer need them by using unset(). E.g.

unset($_SESSION[‘username’]);

(e) Get rid of the session and its related things (for example, when a user logs out) by:

i) Destroying the variables: $_SESSION = array(();

ii) Destroy the session: session_destroy();

iii) Destroy the session cookie by setting its expiration date in the past: setcookie(session_name(),'', time()-50000, '/','',0);
(18) Unlike Explorer, even if you close the Firefox page that has the cookie that doesn’t have expiration date (means it will expire at the end of the session), the cookie will still be there if there are more Firefox browsers open on your computer. When you close all of them down, the cookie will be gone. If the cookie has an expiration date, then the cookie will go when it’s expired unless someone deletes it. That means in the default case, the session in Firefox will expire only when all browsers are closed. But, in Explorer, there is no connection between the browsers. That means if you close an Explorer browser that used the session, and open a new one, the session will be gone. Explorer and Firefox functionality with respect to cookies and sessions differ in other aspects.
(19) You can check if cookies are supported or enabled on the client’s machine. See our examples on how to do that. You can also see the following link which also explains how to check if cookies are disabled in languages such as PHP, JavaScript, ASP, etc. Here is the link: http://www.webmonkey.com/templates/print_template.htmlt?meta=/webmonkey/06/26/index3a_meta.html.

Remember isset() does not work when you visit the page for the first time, because when a page is loaded for the first time, the cookie is sent to the client, so you don’t know if it was set. So, what you need to do is to visit the page a second time. There is more work needed.

(20) When a browser connects to a homepage, it searches the cookies stored. If it finds cookies related to the accessed homepage, these cookies will be transmitted to the server that created them.

(21) Like cookies, you can’t send any output to the browser before the session is started and you can’t even leave blank lines or space or echo statements before the headers, unless you use ob_start() (output buffer start). Headers must be sent before anything else on the page. That is valid even if the SESSION ID is sent through URLs.
(22) If a cookie is storing the username, usually the cookie should be deleted by the end of the session (you should not extend its life beyond that because more than one person may use that computer such as lab computers). But, if you want to keep track of visitors (e.g. number of visits) from the machine no matter who the user is, you can extend the life of the cookie beyond the session period. Similarly, sessions usually are set to have their default lifetime if for example you’re storing user information in them, because more than one person is using the computer and you don’t want people to access information that belongs to other.
(23) To prevent users from using the back button to go back to the log in page as logged in after logging out, either

(a) Use meta tags (in the HTML header) to let the page expire and not store the cache:

<META HTTP-EQUIV="Pragma" CONTENT="no-cache">

<META HTTP-EQUIV="Expires" CONTENT="-1">

(b) Or you can redirect after finding out the user is valid to the same page again. See the example I did.

(24) Since things such as setting cookies, starting sessions, redirections using header have to be done before anything sent to the browser and before other headers such as HTML headers, you can use the functions ob_start() (I put it at the beginning) and ob_end_flush() (I put it at the end). These two are used for output buffering. Using them enables us to use session_start(), set cookies, use header (redirection), and other headers almost anywhere in the script with no warnings and no session IDe effects. ob stands for output buffering. When you use it, every output to the browser (using echo,

print, print_r, etc) will not be sent to the browser right away. Instead it

will be sent to a memory buffer. When you call ob_end_flush(), what's stored

in the buffer will be sent to the browser. You can use ob_end_clean() instead

of ob_end_flush(), but if you use this one, the buffer will be deleted instead

of being sent to the browser. You can also use the function ob_get_clean(). This function returns the contents of the output buffer and ends output buffering. There is another function ob_get_contents(), which returns the current contents of the output buffer as string. Also, there is function ob_get_length() which returns the length of the output buffer.
(25) Session data is stored (default) in a temporary directory (usually /tmp) which is a public writable directory. You can change the default path for which the session is be saved by using php.ini file. You can also do that by using session_save_path(). This function returns the path of the directory where the session data is stored. If you supply the function with a path as an argument, the supplied path will be used to store the session data for the current session. If there are other pages in the session linked to the page, you must call the function in everyone of them. The call to the function must be before the session is started.
PAGE
4

