Strings

Here are some string functions/operators/operations (here assume $s is a string):

(1) See functions stripslashes, addslashes, trim, print, print_r, echo, heredoc that we covered earlier.

(2) The characters of a string start at index 0. The character of $s at index/position k (i.e. the k+1 character) is $s[k].

(3) strlen($s): returns the length of $s.

(4) trim($s) removes the leading and trailing whitespace from $s. The function can take a second argument which is a string representing the list of characters to remove. E.g. trim($s,”\n”);
(5) ltrim($s) removes the leading whitespace from $s. The function can take a second argument which is a character list representing the characters to remove.

(6) rtrim($s) removes the trailing whitespace from $s. The function can take a second argument which is a character list representing the characters to remove.

(7) strtoupper($s): returns the uppercase version of $s.

(8) strtolower($s): returns the lowercase version of $s.

(9) ucfirst($s): converts the first character of $s to uppercase.

(10) ucwords($s): Capitalizes the first letter of each word in $s. This is usually useful when used with strtolower; e.g. $s = ucwords(strtolower($s));
(11) strip_tags($s): removes SGML (Standard Generalized Markup Language) tags such as HTML and PHP tags from $s. The function can take a second argument which is a string representing the tags to keep. E.g. strip_tags($s,"
<h1><title>");
(12) get_meta_tags(“html_page”): returns an associate array whose elements are the Meta Tags of the homepage and whose keys are the names of the meta tags such as: author, keywords, description, etc. E.g.

$m = get_meta_tags("http://www.cs.fredonia.edu/abu-jeib");

echo $m['author'], "
\n";

It prints my name.

(13) substr($s,from,len): Returns the substring of $s whose length is “len” and whose first index/position is “from”. If the third argument is missing, the function will return the substring of $s that starts at position/index “from”.

(14) substr_count($s,$t): Returns how many times the substring $t appears in the string $s.

(15) strrev($s): Returns the reverse of $s.

(16) strpos($s,$t): returns the position of the first occurrence of substring $t in $s.
(17) strpos($s,$t,$start): returns the position of the first occurrence of substring $t in $s starting the search from position $start.

(18) stripos($s,$t): returns the position of the first occurrence of substring $t in $s ignoring case (i.e. this is case insensitive).

(19) stripos($s,$t,$start): returns the position of the first occurrence of substring $t in $s starting the search from position $start ignoring case (i.e. this is case insensitive).
(20) strrpos($s,$t): returns the position of the last occurrence of substring $t in $s.

(21) strripos($s,$t): returns the position of the last occurrence of substring $t in $s ignoring case (i.e. this is case insensitive).

Those pos functions (the above functions whose names end with pos; i.e. functions that search strings) return false if the substring to search for is not found in the string you’re searching. But here is the problem: if the substring you’re searching for occurs at the beginning of the string you’re searching, those functions return 0. Since PHP casts the number 0 to false (and false to the number 0), if you want to check if the substring (e.g. http://) is a part of the string (e.g. the url), use === (three adjacent equal signs) instead of == (two adjacent equal signs), because == returns true when you compare false with 0, while === returns false (because 0 and false are of different types).

Example:

$pos = stripos($url,"http://");

if ($pos === false)

echo "’http://’ is not a part of $url";

else

echo "’http://’ is a part of $url";

If $url begins with http:// and you replace === above with ==, you’ll reach the false conclusion that http:// is not a part of $url.
(22) The operator == (two equal signs with no space in between) is used to compare two values. It returns true if the values are the same. This operator does implicit type casting. For example, it considers the number 23 the same as the string “23” and the same as the number “23.0”.
(23) The operator === (three equal signs with no space in between) is used to compare two values. It returns true if the values are the same and of the same type. This operator does not perform implicit type casting. For example, it considers the number 23 different than the string “23” and different than the number “23.0”. But, it considers the numbers 23.0 and 23.00 the same.

(24) Heredoc. As we said before you can use heredoc (if you want to print a text that extends to more than one line) as follows:

echo <<< begin

<html><head><title>My Homepage</title></head>

<body>

<h1>Homepage of SUNY Fredonia</h1>

Fredonia, NY

</body></html>

begin;

If you want to store such text in a string, say $s, you do it as follows:

$s = <<< begin

<html><head><title>My Homepage</title></head>

<body>

<h1>Homepage of SUNY Fredonia</h1>

Fredonia, NY

</body></html>

begin;

(25) str_replace($substring_to_replace, $substring_to_replace_with, $string_where_to_replace, $how_many_replacements_were_made): Returns the string obtained by replacing every occurrence of $substring_to_replace in $string_where_to_replace by $substring_to_replace_with. The fourth argument is optional. It returns how many replacements were made.
(26) explode($separator, $s, $number_of_pieces): splits $s by $separator and returns the array whose elements are those. $number_of_pieces is optional. It specifies the number of elements in the array (the number of pieces).
E.g.

$s = “Iyad Abu-Jeib, abu-jeib@cs.fredonia.edu, http://www.cs.fredonia.edu/abu-jeib”;

$a = explode(“,”,$s);

The elements of $a in this case are:

$a[0] = “Iyad Abu-Jeib”

$a[1] = “abu-jeib@cs.fredonia.edu”

$a[2] = “http://www.cs.fredonia.edu/abu-jeib”

E.g.

$s = “Iyad Abu-Jeib, abu-jeib@cs.fredonia.edu, http://www.cs.fredonia.edu/abu-jeib”;

$a = explode(“,”,$s,2);

The elements of $a in this case are:

$a[0] = “Iyad Abu-Jeib”

$a[1] = “abu-jeib@cs.fredonia.edu, http://www.cs.fredonia.edu/abu-jeib”

E.g.
$s = “Fredonia”;

$a = explode(“edo”,$s);

The elements of $a in this case are:

$a[0] = “Fr”;
$a[1] = “nia”;

(27) implode($separator,$array): Returns the string consisting of the elements of $array joined by $separator.
E.g.

$a = array(“Iyad Abu-Jeib”, “abu-jeib@cs.fredonia.edu”, “http://www.cs.fredonia.edu/abu-jeib”);

$s = implode(“,”,$a);

$s will be “Iyad Abu-Jeib,abu-jeib@cs.fredonia.edu,http://www.cs.fredonia.edu/abu-jeib”;

(28) split($delimiter, $s, $number_of_pieces):
E.g.

$s = “abu-jeib@cs.fredonia.edu”;

$a = split(“don”,$s);

The elements of $a are:

$a[0] = “abu-jeib@cs.fre”;

$a[1] = “ia.edu”;

E.g.

$s = “abu-jeib@cs.fredonia.edu”;

$a = split(“\@”,$s);

The elements of $a are:

$a[0] = “abu-jeib”;

$a[1] = “cs.fredonia.edu”;

E.g.

$s = “abu-jeib@cs.fredonia.edu”;

$a = split(“@”,$s);

The elements of $a are:

$a[0] = “abu-jeib”;

$a[1] = “cs.fredonia.edu”;

E.g.
$s = "abu-jeib@cs.fredonia.edu";

$ar = split("\@|\.",$s);

The elements of $a are:

$a[0] = “abu-jeib”;

$a[1] = “cs”;

$a[2] = “fredonia”;

$a[3] = “edu”;

WARNING: don’t write $ar = split("@|.",$s);

(29) string serialize(value): This function converts its argument to an ASCCI string (it not like implode). The original argument can be recovered by using unserialize. This function is useful for storing complex values. It’s used, for example, in cookies (because a cookie can store only one value of type string, you can store multi values or arrays in it by applying serialize to those values).

(30) value unserialize(string): This function does the opposite of function serialize().

Example:

<?

$a = array("cd", "efg");

echo implode($a);

echo "
";

echo serialize($a);

echo "
";

foreach (unserialize(serialize($a)) as $v)

 echo "$v, ";

echo "
======
";

$a = "xyz";

echo serialize($a);

echo "
";

echo unserialize(serialize($a));

echo "
======
";

$a = 2006;

echo serialize($a);

echo "
";

echo unserialize(serialize($a));

?>

Output:

cdefg
a:2:{i:0;s:2:"cd";i:1;s:3:"efg";}
cd, efg,
======
s:3:"xyz";
xyz
======
i:2006;
2006

(31) string basename(string path): Returns the file name component of path
(32) string dirname(string path): Returns the directory name component of path
(33) The constant __FILE__ returns the path and the name of the file.
PAGE
2

