Linear Transformations

Notation: If $\vec{x} \in R^k$, then

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix}$$
 or $\vec{x} = (x_1, x_2, \cdots, x_k)$.

Definition: A mapping (function) L from \mathbb{R}^n to \mathbb{R}^m (n and m are natural numbers) is called a *linear transformation* iff $L(a\vec{x} + b\vec{y}) = aL(\vec{x}) + bL(\vec{y})$, for all a and b in \mathbb{R} and for all \vec{x} and \vec{y} in \mathbb{R}^n .

Theorem 1: Let A be an m by n matrix and let $L: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be $L(\vec{x}) = A\vec{x}$, for all $\vec{x} \in \mathbb{R}^n$. Then L is a linear transformation.

Proof: We have to prove that $L(a\vec{x} + b\vec{y}) = aL(\vec{x}) + bL(\vec{y})$, for all a and b in \mathbb{R} and for all \vec{x} and \vec{y} in \mathbb{R}^n . But,

$$L\left(a\vec{x}+b\vec{y}\right)=A\left(a\vec{x}+b\vec{y}\right)=A(a\vec{x})+A(b\vec{y})=a(A\vec{x})+b(A\vec{y})=aL(\vec{x})+bL(\vec{y}).$$

Theorem 2: If $L: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is a linear transformation, then there exists an m by n matrix A such that $L(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$.

Remark: Combining the above two theorems we get the following theorem:

Theorem 3: $L: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is a linear transformation if and only if there exists an m by n matrix A such that $L(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$.

Example: Let $L: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be $L(\vec{x}) = x_1 + x_2$, for all $\vec{x} \in \mathbb{R}^2$. Then L is a linear transformation.

Proof: Done in class.

Example: Let $L: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be $L(\vec{x}) = (-x_2, x_1)$, for all $\vec{x} \in \mathbb{R}^2$. Then L is a linear transformation.

Proof: Done in class.

Example: Let t be a real number and let $L: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be $L(\vec{x}) = t\vec{x}$, for all $\vec{x} \in \mathbb{R}^n$. Then L is a linear transformation.

Proof: We have to prove that $L(a\vec{x} + b\vec{y}) = aL(\vec{x}) + bL(\vec{y})$, for all a and b in \mathbb{R} and for all \vec{x} and \vec{y} in \mathbb{R}^n . But,

$$L(a\vec{x} + b\vec{y}) = t(a\vec{x} + b\vec{y}) = t(a\vec{x}) + t(b\vec{y}) = a(t\vec{x}) + b(t\vec{y}) = aL(\vec{x}) + bL(\vec{y}).$$

Note: If you take t = 1 in the previous example, you get what's called the identity mapping (aka the identity transformation aka the identity operator).

Example: Let $L: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be $L(\vec{x}) = (1 + x_1, x_2)$, for all $\vec{x} \in \mathbb{R}^2$. Then L is not a linear transformation.

Proof:

$$L(a\vec{x} + b\vec{y}) = L\left(\begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \end{bmatrix}\right) = \begin{bmatrix} 1 + ax_1 + by_1 \\ ax_2 + by_2 \end{bmatrix}.$$

On the other hand,

$$aL\left(\vec{x}\right) + bL\left(\vec{y}\right) = a \begin{bmatrix} 1 + x_1 \\ x_2 \end{bmatrix} + b \begin{bmatrix} 1 + y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} a + b + ax_1 + by_1 \\ ax_2 + by_2 \end{bmatrix}.$$

Clearly $L(a\vec{x} + b\vec{y}) \neq aL(\vec{x}) + bL(\vec{y})$, for all a and b in \mathbb{R} and for all \vec{x} and \vec{y} in \mathbb{R}^2 . For example, take a = b = 1 and $x_1 = x_2 = y_1 = y_2 = 1$.

Exercises: Please do the following exercises. I'll post the solutions in the coming days.

Decide whether the following are linear transformations or not. Explain.

(1)
$$L: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 defined by $L(\vec{x}) = (x_1, x_2, 1)$.

Solution: L is not a linear transformation, because

$$L\left(a\vec{x}+b\vec{y}\right) = L\left(\left[\begin{array}{c}ax_1+by_1\\ax_2+by_2\end{array}\right]\right) = \left[\begin{array}{c}ax_1+by_1\\ax_2+by_2\\1\end{array}\right].$$

On the other hand,

$$aL\left(\vec{x}\right) + bL\left(\vec{y}\right) = a \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix} + b \begin{bmatrix} y_1 \\ y_2 \\ 1 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ a + b \end{bmatrix}.$$

Clearly $L(a\vec{x} + b\vec{y}) \neq aL(\vec{x}) + bL(\vec{y})$, for all a and b in \mathbb{R} and for all \vec{x} and \vec{y} in \mathbb{R}^2 . For example, take a = b = 1 and $x_1 = x_2 = y_1 = y_2 = 1$.

(2) $L: \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by $L(\vec{x}) = \sqrt{x_1^2 + x_2^2}$.

Solution: L is not a linear transformation, because

$$L(a\vec{x} + b\vec{y}) = L\left(\begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \end{bmatrix}\right) = \sqrt{(ax_1 + by_1)^2 + (ax_2 + by_2)^2}$$

On the other hand,

$$aL(\vec{x}) + bL(\vec{y}) = a\sqrt{x_1^2 + x_2^2} + b\sqrt{y_1^2 + y_2^2}.$$

Clearly $L(a\vec{x}+b\vec{y}) \neq aL(\vec{x})+bL(\vec{y})$, for all a and b in \mathbb{R} and for all \vec{x} and \vec{y} in \mathbb{R}^2 . For example, take a=b=-1 and $x_1=x_2=y_1=y_2=1$. Then, $L(a\vec{x}+b\vec{y})=\sqrt{8}=2\sqrt{2}$, while $aL(\vec{x})+bL(\vec{y})=-2\sqrt{2}$

(3) $L: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ defined by $L(\vec{x}) = (x_2, x_1, x_1 + x_2)$.

Solution: L is a linear transformation.

$$L(a\vec{x} + b\vec{y}) = L\left(\begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \end{bmatrix}\right) = \begin{bmatrix} ax_2 + by_2 \\ ax_1 + by_1 \\ a(x_1 + x_2) + b(y_1 + y_2) \end{bmatrix}.$$

$$aL(\vec{x}) + bL(\vec{y}) = a \begin{bmatrix} x_2 \\ x_1 \\ x_1 + x_2 \end{bmatrix} + b \begin{bmatrix} y_2 \\ y_1 \\ y_1 + y_2 \end{bmatrix} = \begin{bmatrix} ax_2 + by_2 \\ ax_1 + by_1 \\ a(x_1 + x_2) + b(y_1 + y_2) \end{bmatrix}.$$

Clearly $L(a\vec{x} + b\vec{y}) = aL(\vec{x}) + bL(\vec{y})$, for all a and b in \mathbb{R} and for all \vec{x} and \vec{y} in \mathbb{R}^2 .

(4)
$$L: \mathbb{R}^n \longrightarrow \mathbb{R}^n$$
 defined by $L(\vec{x}) = (0, -x_2, 0, \dots, 0)$.

Solution: L is a linear transformation.

$$L\left(a\vec{x} + b\vec{y}\right) = L\left((ax_1 + by_1, ax_2 + by_2, \cdots, ax_n + by_n)\right) = (0, -ax_2 - by_2, 0, \cdots, 0).$$

$$aL\left(\vec{x}\right) + bL\left(\vec{y}\right) = a(0, -x_2, 0, \cdots, 0) + b(0, -y_2, 0, \cdots, 0) = (0, -ax_2 - by_2, 0, \cdots, 0).$$
 Clearly $L\left(a\vec{x} + b\vec{y}\right) = aL\left(\vec{x}\right) + bL\left(\vec{y}\right)$, for all a and b in \mathbb{R} and for all \vec{x} and \vec{y} in \mathbb{R}^n .

(5)
$$L: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 defined by $L(\vec{x}) = (3,5) + \vec{x}$.

Solution: L is not a linear transformation, because

$$L\left(a\vec{x}+b\vec{y}\right) = L\left(\left[\begin{array}{c}ax_1+by_1\\ax_2+by_2\end{array}\right]\right) = \left[\begin{array}{c}3\\5\end{array}\right] + \left[\begin{array}{c}ax_1+by_1\\ax_2+by_2\end{array}\right] = \left[\begin{array}{c}3+ax_1+by_1\\5+ax_2+by_2\end{array}\right].$$

On the other hand,

$$aL\left(\vec{x}\right) + bL\left(\vec{y}\right) = a\left(\begin{bmatrix} 3\\5 \end{bmatrix} + \begin{bmatrix} x_1\\x_2\end{bmatrix}\right) + b\left(\begin{bmatrix} 3\\5 \end{bmatrix} + \begin{bmatrix} y_1\\y_2\end{bmatrix}\right) = a\begin{bmatrix} 3+x_1\\5+x_2\end{bmatrix} + b\begin{bmatrix} 3+y_1\\5+y_2\end{bmatrix} = \begin{bmatrix} 3a+3b+ax_1+by_1\\5a+5b+ax_2+by_2\end{bmatrix}.$$

Clearly $L(a\vec{x} + b\vec{y}) \neq aL(\vec{x}) + bL(\vec{y})$, for all a and b in \mathbb{R} and for all \vec{x} and \vec{y} in \mathbb{R}^2 . For example, take a = b = 1 and $x_1 = x_2 = y_1 = y_2 = 1$.