CSIT 241 - Spring 03 - Exercises

1. Find the inverse of $f: \mathbb{R} \longrightarrow (4, \infty), f(x) = 4 + e^{3x-5}$ if it exists.

Solution: The function is a bijection (a similar example was done in class). Hence, it's invertible. Now let's find the inverse. First, replace f(x) by y.

$$y = 4 + e^{3x - 5}.$$

$$y - 4 = e^{3x - 5}$$
.

$$ln(y-4) = ln(e^{3x-5})$$

$$3x - 5 = ln(y - 4).$$

$$3x = 5 + ln(y - 4).$$

$$x = \frac{5 + \ln(y - 4)}{3}.$$

Hence, $f^{-1}(x) = \frac{5 + \ln(x - 4)}{3}$. Note that f^{-1} is a bijection from $(4, \infty)$ to \mathbb{R} . Note also $|\mathbb{R}| = |(4, \infty)|$, and hence, $(4, \infty)$ is uncountable.

2. Find the inverse of $f: (\frac{5}{3}, \infty) \longrightarrow \mathbb{R}$, $f(x) = 4 + \ln(3x - 5)$ if it exists.

Solution: The function is a bijection (a similar example was done in class). Hence, it's invertible. Now let's find the inverse. First, replace f(x) by y.

$$y = 4 + \ln(3x - 5).$$

$$y - 4 = \ln(3x - 5).$$

$$e^{y-4} = e^{\ln(3x-5)}$$
.

$$3x - 5 = e^{y-4}$$
.

$$3x = 5 + e^{y-4}$$
.

$$x = \frac{5 + e^{y-4}}{3}.$$

Hence, $f^{-1}(x) = \frac{5+e^{x-4}}{3}$. Note that f^{-1} is a bijection from \mathbb{R} to $(\frac{5}{3}, \infty)$. Note also $|\mathbb{R}| = (\frac{5}{3}, \infty)$, and hence, $(\frac{5}{3}, \infty)$ is uncountable.

3. Find the inverse of $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = 4 + (3x - 5)^7$ if it exists.

Solution: The function is a bijection (a similar example was done in class). Hence, it's invertible. Now let's find the inverse. First, replace f(x) by y.

$$y = 4 + (3x - 5)^7.$$

$$y - 4 = (3x - 5)^7.$$

$$(y-4)^{\frac{1}{7}} = 3x - 5.$$

$$3x = 5 + (y - 4)^{\frac{1}{7}}.$$

$$x = \frac{5 + (y - 4)^{\frac{1}{7}}}{3}.$$

Hence, $f^{-1}(x) = \frac{5+(x-4)^{\frac{1}{7}}}{3}$. Note that f^{-1} is a bijection from \mathbb{R} to \mathbb{R} .