CSIT 221

Computer Science II

Spring 2006
Tentative Syllabus and Course Policies

Instructor:
Dr. Iyad Abu-Jeib

Office: 109 Fenton Hall

Office Phone: 673-4757

Office Hours: MTWF 4:00-4:50 PM, F 11:00 – 11:50 AM (I may be a little late because of my classes, so please wait if you don’t find me in office on time) or by appointment.

E-mail: abu-jeib@cs.fredonia.edu
Website: http://www.cs.fredonia.edu/~abu-jeib/
Meeting Times:
Section 01: MWF 2:00 - 2:50 Fenton 2164.
Section 02: MWF 3:00 - 3:50 Fenton 2164.
Textbook: C++ Plus Data Structures, 3rd Edition, by Nell Dale, Jones and Bartlett Publishers, Inc., 2003.

Prerequisite: CSIT 121.

Grading:
1. Two hour exams and a comprehensive final. Each hour exam will consist 15% of your course grade. The final will consist 25% of the course grade.

2. Assignments. The assignments will consist 15% of your course grade.

3. Quizzes. The quizzes will consist 20% of the course grade.

4. Attendance. Attendance will consist 10% of the course grade. Here is the attendance policy:

a) You'll be allowed to miss at most 3 classes with no documented acceptable excuse (email is not considered a documented acceptable excuse).

b) Any class you miss after the first 3 classes described above will result in deducting 2% of your course grade. This applies until the 10% portion of the course grade assigned for attendance is consumed.

c) If the student does not have satisfactory attendance, the student may not be notified, but I'll take a note of that and keep it in my records until I assign the course grades at the end of the semester.

d) You must be on time. You must not leave before the class ends. Repeated late arrival or early departure may be considered as absence.

e) Excusable absence must be documented and must be inline with the college's policy about that. You must inform me in advance if you intend to miss class for a legitimate reason such as death in the family (with a proof) and illness (with a doctor's report). Absences for family gatherings or family problems or to catch a flight or because of another course, etc, are not considered excusable absences.

Remark: There is a possibility that I may not include attendance for those who don’t want to count attendance in the course grade. If that is the case, the 10% portion of the course grade that is assigned for attendance will go for the final exam.

Attendance: Attendance is required (see above). You are responsible for material presented in class and for announcements announced in class. If you miss a class, it’s your responsibility to ask about the material covered in the class you missed and about the announcements announced that day. Make ups of exams/quizzes/worksheets are allowed only if you have a documented hardship. Late assignments won’t be accepted. Any measure to improve your grades (like extra-credit, extra points, and dropping a quiz/assignment (if happened)) may apply only to students who have satisfactory attendance.

Incomplete: Incomplete grade will be given only if you meet the university guidelines for incomplete.

Grading Scale: 92-100: A, 90-91: A-, 88-89: B+, 82-87: B, 80-81: B-, 78-79: C+, 72-77: C, 70-71: C-, 68-69: D+, 62-67: D, 60-61: D-, < 60: E.

Behavior: Inappropriate behavior will not be tolerated and may result in very severe consequences. Any behavior that may result in disturbing the class, students, or the professor, is considered inappropriate behavior.

Remarks:
1) I may assign extra work to do for bonus points or do something else to improve your grades. Such work (if assigned) will be optional.

2) If you need help, please do not hesitate to ask for it. My job is to help you understand the material and succeed. I’ll be extremely happy to answer your questions and to assist you.

3) If you have a hardship, please let me know in advance.

4) I’ll be extremely happy to get a feedback from you about my teaching style and the level of difficulty of the exams and the assignments. We have to work together to make improvements if such improvements are needed. You can provide me with feedback directly or indirectly (by leaving a note underneath my office door or using the teaching feedback form on my website).

5) You must do your assignments by yourself. Do NOT work in pairs or in groups unless I ask you to..

6) I may cover material not available in the textbook. You are responsible for such material and for everything I mention in class.

7) I may not grade all the assignments and I may not grade all the questions/parts in the assignment I decide to grade.

8) Check your Fredonia email daily. I may contact you any day by email.

9) Cheating in any form will not be tolerated.

10) The syllabus is subject to change.

11) Bring your Fredonia ID to the exams and the quizzes.

12) The grading scale is subject to be made more flexible if that’s needed to improve the grades.

13) Keep all of your graded assignments, quizzes, exams, and all other graded stuff.

14) At some point of time, I’ll give you usernames and passwords to access your grades and other stuff. You’ll be able to change the password, but if you're taking two classes with me, make sure that each class has a different password.

15) Sometimes I repeat questions. Repeated mistakes result in harsher grading.

16) Here's how my makeup work is done (of course provided there is an acceptable documented excuse): If a student misses a quiz, the next quiz will be doubled (counted twice) and if a student misses a test, the next one will be doubled (i.e. counted twice). That does not apply, of course, to the final.

17) Always use only the notation used in class. Using a different notation may result in no credit or partial credit.

18) Always spread out when a quiz/test is given.
19) Never give two answers for the same question. If you do that, you'll get no credit.

20) On tests, quizzes, homework, always cross out unwanted writing.

21) An extra credit quiz may be given (may be without advanced notice) within a week of a quiz/test/homework. There will be no make up for such a quiz. Such quizzes will be given only when necessary.

22) I may make random photocopies of some random graded quizzes/homework/exams.

23) For “identify the error” questions, identifying non-errors as errors would result in deduction of points.
24) I may ask each student to answer a question or more every class.

25) If a class was cancelled for an unexpected reason and a test/quiz/assignment/homework was scheduled or due that day, it will be held/due next meeting time.
Objectives:
You learn in this course advanced C++ topics. The topics you learn are necessary for creating advanced C++ projects and for learning other courses. They help make your programs more sophisticated and enhance your programming skills.
Why C++?
C++ is one of the most popular and powerful languages for both academia and industry. You always find companies asking for C++ programmers. And many of the data structures books and other computer books use C++ for writing their algorithms. C++ is widely used and will remain so for a long time.

C++ (A Brief History):
In the late 1960s and early 1970s, the programming language, C, was created at At&T Bell Labs by Dennis Ritchie. He created it because simply he wanted a language easier to use and to understand by people to replace the more difficult low-level assembly language that was the dominant language at that time. His idea of creating the C language came up when a group of people at the Bell Labs where designing the UNIX operating system which initially was written in assembly language. After Ritchie created C, approximately 90% of UNIX was reprogrammed in C. Ritchie called his new language C, because he adopted features from a programming language called B in C.

In 1985 another scientist of Bell Labs, Bjarne Stroustrup, created C++. C++ is just an expansion of C. It includes features for object-oriented programming and others. The new language (which includes C as a subset) was called C++ because it added more features to C. The ++ is the increment operator in C++ (e.g. M++=M+1 which means increment the value stored in the variable M by 1).

After C++ was invented, some companies added new features to it and so slightly different versions of C++ started to appear until it was standardized in mid-1998.

Basic Definitions:
Machine language: A computer internal language that consists of binary-coded instructions. Of course, the computer understands this language.

Assembly language: A low-level programming language that is easier for humans to use and to understand, but not as easy as high-level programming languages. We can say that assembly language lies in the “middle” between machine language and high-level languages. The computer does not understand this language (it is different than the language it understands which is called machine language) and so it needs a program to translate it to a language it can understand (machine code). The program that does that is called an assembler.

High-level language: A language that is easy to work with by people (like C++, Fortran, etc.). The computer cannot understand a program written in such languages (called a source program) without a translator (a program that translates such languages into machine code). The translator is called compiler and the machine version of the source program is called an object program. Every program you write in C++ or any other high-level language (source program) must be compiled (translated to an object program) before executed. When you run the program, control transfers from the computer’s operating system (a set of programs that manages the computer’s resources) to the program.

Topics (not necessarily in order):
Abstract data types; static and dynamic data structures; recursion; recursive programming; class concepts, encapsulation; linked lists; doubly linked lists; stacks, queues and their implementations and doubly applications; binary trees; binary search tree; tree traversals, polymorphism and inheritance.
We’ll cover the following chapters from the textbook: chapters 2, 3, 4, 5, 6, 7, 8. We may skip some sections of these chapters. We’ll also cover additional extra material.

In detail, the topics are:

1. Review of classes.

2. Abstract data types; static and dynamic data structures.

3. Static arrays; arrays as arguments and parameters.

4. Default arguments.

5. Binary and linear search (recursive and non-recursive).

6. Insertion sort and selection sort (recursive and non-recursive) for use with linked lists and with arrays.

7. Header files and breaking the program to 3 parts (specification part of the class, implementation part of the class, and the driver program).

8. Templates for use in classes and for stand-alone (independent) functions.

9. Exceptions and exception handling (including the general exception, built-in exception classes and user-defined exception classes).

10. Overloaded operators (including overloading the assignment operator, ==, !=, etc, for use with objects and other things).

11. Constructors (including the copy constructor) and destructors.

12. Methods to access or modify data members of a class.

13. Const and static methods.

14. this pointer.

15. Applications.

16. Pointers; pointers by value and by reference.

17. Functions returning pointers; pointers and array arguments; pointers and reference arguments.

18. The new and delete operators.

19. Dynamic arrays and dynamic data.

20. Recursion (among the examples, there is an example to convert a number from any number system to any other number system) and computing the running time of recursive functions/methods.

21. Running time and Big O notation.

22. Computing the running time (including the running time for recursive functions/methods).

23. Stacks and queues (with templates and exception classes) and their applications. All the standard methods/constructors/destructors for stacks and queues are implemented. Different implementations of some methods are presented.

24. Trees; binary trees; binary search trees (all with templates and exception classes); tree traversals; methods (iterative and recursive, different implementations of the same methods, combining two or more methods in one) for them. The methods implemented include constructors, destructors, finding whether a value is in the tree or not, retrieving a node; finding the level of a node, counting the number of levels, counting the number of nodes, printing all the nodes at a given level, finding the depth/height of the tree, finding the sum of the nodes, finding the min/max, printing in inorder, preorder, and postorder, insertion of a node in the tree, deletion (two different deletion procedures are covered) of a node from the tree, destroying the tree, testing if the tree is full or empty, making the tree empty.

25. Sorted/unsorted lists implemented with static arrays and dynamic arrays, and as linked lists (all implemented with templates and exception classes).

26. Linked lists (sorted and unsorted); linear linked lists; circular linked lists; doubly linked lists; other kinds of linked lists; methods (iterative and recursive, different implementations of the same methods, combining two or more methods in one) for them. Methods implemented include constructors, destructors, sorting the linked list (if it is unsorted) by selection sort, recursive selection sort, and insertion sort, finding whether an element is in the list or not, retrieving an element from the list, retrieving the element at a given position; finding the length of the list, printing the elements of the list in order and in reverse order, insertion of an element in the list, insertion of an element in the list at a specified position/location, deletion of an element from the list, deletion of the element at a given position, destroying the list, testing if the list is full or empty, making the list empty.

27. Files.

28. Other topics if time permits.

1
3

