Final Exam

Name:

Remark: For "find the error" questions, if you mark all as errors or vice versa, you'll get no credit.

(1) (8 points) Decide whether each of the following statements which are numbered 1, 2, …, 8 will result in an error or not. If the statement results in an error (compile-time or run-time), write "ERROR" near the statement (on the same line). If the statement does not result in an error, write its output near it (on the same line).

#include <iostream>

using namespace std;

class A

{

public:

void f() {cout << "Function f of A.\n";}

};

class B

{

public:

void f(int n) {cout << "Function f of B.\n";}

};

class C: public A, public B

{

/* 1 */ void k() {A::f();}

/* 2 */ //void g() {f();}

/* 3 */ //void h() {f(3);}

};

int main()

{

A a;

/* 4 */
a.f();

C c;

/* 5 */
c.f();

/* 6 */
c.f(3);

/* 7 */ c.A::f();

/* 8 */
A::f();

return 0;

}

(2) (3 points) Decide whether the following program would result in an error or not. If not, write down its output. If yes, explain why:

#include <iostream>

using namespace std;

class A

{

private:

int a;

public:

void f() {cout << "Function f of A.\n";}

A(int a) {cout << "I'm a constructor of A.\n";};

};

class B: public A

{

private:

int b;

public:

void f() {cout << "Function f of B.\n";}

B(int a, int b) {cout << "I'm a constructor of B.\n";};

};

int main()

{

B b(2,3);

return 0;

}

(3) (4 points) Decide whether the following program would result in an error or not. If not, write down its output. If yes, explain why:

#include <iostream>

using namespace std;

class A

{

private:

int a;

public:

void f() {cout << "Function f of A.\n";}

A() {cout << "I'm a constructor of A.\n";};

};

class B: public A

{

private:

int b;

public:

void f() {cout << "Function f of B.\n";}

B(int a, int b) {cout << "I'm a constructor of B.\n";};

};

int main()

{

B b(2,3);

return 0;

}

(4) (5 points) Decide whether each of the following statements which are numbered 1, 2, …,5 will result in an error or not. If the statement does not result in an error, write near the statement its output.

#include <iostream>

using namespace std;

class A

{

public:

void f() {cout << "Function f of A called." << endl;}

};

class B: public A

{

public:

virtual void f() {cout << "Function f of B called." << endl;}

};

class C: public B

{

void f() {cout << "Function f of C called." << endl;}

};

int main()

{

B* a;

a = new B();

/* 1 */ a -> f();

a = new C();

/* 2 */ a -> f();

A* b;

b = new B();

/* 3 */ b -> f();

delete a;

/* 4 */ a -> f();

B *c;

/* 5 */ c = new A();

return 0;

}

(5) (5 points) Find the output of the following program exactly as it would look on the screen:

#include <iostream>

using namespace std;

class AA

{

protected:

int aa;

public:

AA(int aa) {this -> aa = aa; cout << "I'm a constructor for AA" << endl;};

void display() {cout << aa << endl;};

~AA() {cout << "I'm a destructor for AA" << endl;};

};

class A

{

protected:

int a;

public:

A(int a) {this -> a = a; cout << "I'm a constructor for A" << endl;};

void display() {cout << a << endl;};

~A() {cout << "I'm a destructor for A" << endl;};

};

class B: protected A, public AA

{

protected:

int b;

public:

B(int aa, int a, int b):AA(aa), A(a)

{B::b = b ; cout << "I'm a constructor for B" << endl;}

void display() {AA::display(); A::display(); cout << b << endl;}

~B() {cout << "I'm a destructor for B" << endl;}

};

int main()

{

B x(4,5,6);

x.display();

x.AA::display();

return 0;

}

Output:
(6) (3 points) Find the output of the following program exactly as it would look on the screen:

#include <iostream>

using namespace std;

int f(int a, int b = 2, int c = 10);

int main()

{

cout << f(5,3) << endl;

return 0;

}

int f(int a, int b, int c)

{

return a * b * c;

}

Output:
(7) (6 points) Find the output of the following program exactly as it would look on the screen:

#include <iostream>

using namespace std;

int f(int n);

int main()

{

cout << f(3) << endl;

return 0;

}

int f(int n)

{

if (n <= 1)

return 1;

else

return 2 * f(n-1) + 3;

}

Output:
(8) (7 points) Find the output of the following program exactly as it would look on the screen. Ignore any run-time errors that may occur.

#include <iostream>

using namespace std;

class Vector

{

public:

int* data;

int size;

Vector(int size = 1);

~Vector();

Vector& Vector::operator=(const Vector &v);

};

int main()

{

Vector v1(4);

Vector v2 = v1;

v1.data[1] = 9;

v2.data[2] = 8;

cout << v1.data[1] << "\t" << v1.data[2] << endl;

cout << v2.data[1] << endl;

Vector v3;

v3 = v1;

v3.data[3] = 9;

cout << v1.data[3] << endl;

cout << v2.data[3] << endl;

cout << v3.data[1] << "\t" << v3.data[3] << endl;

return 0;

}

Vector::Vector(int size)

{

this -> size = size;

data = new int[size];

for (int i = 0; i < size; i++)

data[i] = 0;

}

Vector::~Vector()

{

if (data != NULL)

delete [] data;

}

Vector& Vector::operator=(const Vector &v)

{

if (this != &v) // check for self assignment

delete [] data;

size = v.size;

data = new int[size];

for (int i = 0; i < size; i++)

data[i] = v.data[i];

return *this; // For assignments like v1=v2=v3

}

Output:

(9) (6 points) Find the running time (in the big O notation) of the following. Write the answer in terms of N

int count = 0, i, j;

float sum = 0;

for (i = 1; i <= N; i++)

for(j = 1; j <= N; j++)

{

count++;

sum = sum + (i * j);

}

sum = sum / count;

Your Answer:

(10) (8 points) Write a recursive function for our linear unsorted linked list to return the smallest element of the list. You need here to write two functions whose prototypes are as follows (the first one is private and the second is public). Be careful: the functions should not change the data members of the list. Assume ItemType is numeric and use templates.

ItemType findMinRec(NodeType<ItemType>* list, ItemType min);

ItemType findMinRecCaller();

(11) (7 points) Write a non-recursive (i.e. an iterative) function for our linear unsorted linked list to return the average of the positive elements of the list. You need here to write one function whose prototype is as follows. Be careful: the function should not change the data members of the list. Assume ItemType is numeric and sue templates.

float findAvgPos();

(12) (7 points) Write a recursive function for our BST class to print it in preorder. Use templates.

(13) (5 points) Traverse the following BST in preorder (i.e. print the information stored in the nodes of the tree when the tree is traversed in preorder).

[image: image1.png]

(14) (5 points) Draw the above BST above after the deletion of the node containing 9.

(15) (5 points) Insert the following (in the order they're listed) in a binary search tree: 20, 50, 10, 30, 40, 27, 7, 15, 99. I.e. draw the tree when the above nodes are inserted in the given order.

(16) (12 points) Use the linked list in the picture below to answer the following questions:

[image: image2.png]40

50

20

15

35

25

listData

pirl

pir2

(a) Find the output of each of the following:

I. cout << ptr2 -> next -> info;

Output:

II. cout << listData -> next -> info;

Output:

(b) Are the following expressions true or false

I. listData -> next -> next == ptr1

Your answer:

II. ptr2 -> next -> next -> next == NULL

Your answer:

(c) Suppose that I want to delete the last node and remove the memory allocated for it. Is the following a correct way to do it?

delete(ptr2 -> next -> next);

ptr2 -> next -> next = NULL;

Your answer:

(d) Suppose that I want to delete the node pointed to by ptr2 and remove the memory reserved for it. Is the following a correct way to do it?

delete ptr2;

ptr1 -> next = ptr2 -> next;

Your answer:

(17) (4 points)

class A

{

protected:

int a;

public:

A(int aa);

};

class B: public A

{

protected:

int b;

public:

B(int aa, int b);

};

A::A(int aa)

{

a = aa;

}

Write the implementation part of the constructor of B. The constructor of B must invoke the constructor of A in its header to initialize the data member a to aa and it must initialize the data member b to the parameter b in its body.

(18) (6 points) Decide whether each of the following statements which are numbered 1, 2, …, 6 will result in an error or not. If the statement results in an error (compile-time or run-time), write "ERROR" near the statement (on the same line). If the statement does not result in an error, write its output near it (on the same line).

#include <iostream>

using namespace std;

class A

{

protected:

static int z;

public:

void f() {cout << "Function f of A.\n";}

static int n;

};

class B:public A

{

public:

void f() {cout << "Function f of B.\n";}

};

class C:protected A

{

};

int main()

{

/* 1 */ cout << A::n << endl;

/* 2 */ cout << B::n << endl;

B b;

/* 3 */
b.A::f();

/* 4 */
b.f();

/* 5 */
cout << B::z << endl;

C c;

/* 6 */
c.f();

return 0;

}

int A::n = 234;

int A::z = 987;

(19) (4 points) Decide whether each of the following statements which are numbered 1, 2 will result in an error or not. If the statement results in an error (compile-time or run-time), write "ERROR" near the statement (on the same line). If the statement does not result in an error, write its output near it (on the same line).

#include <iostream>

using namespace std;

class A

{

public:

virtual void f() = 0;

static void g() {cout << "Function g of A.\n";}

};

int main()

{

/* 1 */ A::g();

/* 2 */ A a;

return 0;

}

template <typename ItemType>

struct TreeNode

{

ItemType info;

TreeNode *left, // the left child

 *right; // the right child.

};

template <typename ItemType>

class BinarySearchTree

{

private:

TreeNode<ItemType>* root;

…

public:

…

}

=====================

class OutOfBounds

{

};

class EmptyList

{

};

class FullList

{

};

class NotFound

{

};

class InTheList

{

};

class LastElement

{

}

template <typename ItemType>

struct NodeType

{

ItemType info;

NodeType *next;

};

template <typename ItemType>

class UnsortedType

{

private:

NodeType<ItemType> *listData, *currentPos;

int length;

…

public:

…

}
� EMBED PBrush ���

� EMBED PBrush ���

2
13

[image: image3.png]

[image: image4.png]40

50

20

15

35

25

listData

pirl

pir2

_1175460281

_1175505050

