Exercises on Arrays and Structs

(1) Declare a two dimensional array of 2 columns and a maximum of 100 rows and of type float. The program asks the user for the actual number of rows and then for the elements of the array. Then the program sorts the array with respect to the second column. For example, if the original array is

4
7

6
8

2
3

Then after sorting the array should be

2
3

4
7

6 8

Solution:

#include <iostream>

#include <iomanip>

using namespace std;

int Min_Ind(float [][2], int, int);

void Selection_Sort(float [][2], int);

int main()

{

float A[100][2];

int N, i;

cout << "Enter the size of the array: ";

cin >> N;

cout << "Enter the elements of the array: \n";

for (i = 0; i < N; i++)

cin >> A[i][0] >> A[i][1];

Selection_Sort (A,N);

cout << "After sorting, the array is: \n";

for (i = 0; i < N; i++)

cout << setw(10) << A[i][0] << setw(10) << A[i][1] << "\n";

return 0;

}

int Min_Ind(float A[][2], int i, int N)

{

// This function finds the index, MI, of the smallest element of the

// subarray of A whose indices (subscripts) range from i to N-1.

int k, MI;

MI = i;

for (k = i+1; k < N; k++)

if (A[k][1]< A[MI][1])

MI = k;

return MI;

}

void Selection_Sort(float A[][2], int N)

{

int i, MI;

float Temp;

// MI is the index of the minimum in the subarray of A whose indices start at

// i and end at N-1.

for (i = 0; i < N - 1; i++)

{

// Find MI.

MI = Min_Ind(A,i,N);

// Swap the element at index i with the element at index MI.

Temp = A[i][0];

A[i] [0]= A[MI][0];

A[MI][0] = Temp;

Temp = A[i][1];

A[i] [1]= A[MI][1];

A[MI][1] = Temp;

}

}

(2) Write a C++ program with the following features:

1. The program declares a one-dimensional array, A, of size 100.

2. The program reads a positive integer N. N is the number of elements of A that will be processed.

3. Then the program reads A. Each element of A represents a course grade of a student. This course grade should be of type int.

4. Then pass A and the size of A to a function called F.

5. F should do the following:

It finds the highest grade in A, then it moves thehighest grade to the top of the array. For example, if the original A is:

78

88

94

83

94

88

Then, F should change A to

94

94

78

83

88

88

6. Then function main displays the new array.

Solution:

#include <iostream>

using namespace std;

void F(int A[],int N);

int main()

{

int i, N, A[100];

cout << "Enter the size of A: ";

cin >> N;

// Read A.

cout << "Enter " << N << " elements:" << endl;

for (i=0; i < N; i++)

cin >> A[i];

// Call function F

F(A,N);

// Display A.

for (i=0; i < N; i++)

cout << A[i] << " ";

cout << endl;

return 0;

}

void F(int A[],int N)

{

int i, Max, Count = 0;

// Find the maximum of A.

Max = A[0];

for (i=1; i < N; i++)

if (A[i] > Max)

Max = A[i];

// Move the maximum to the top.

for (i=0; i < N; i++)

if (A[i]==Max)

{

A[i] = A[Count];

A[Count] = Max;

Count++;

}

}

(3) Write a C++ program to declare A and B to be one-dimensional arrays of type int. Then ask the user to enter the number of elements of A followed by the number of elements of B (assume the size is at most 200). The read the size of each one of them. Then let

A[i] = (i2+7) mod 35, B[i] = (i2 + 9) mod 35, for 0 (i (Size -1.

Now display both arrays, each array on a separate line. Then find the minimum element of each array and then display them (indicate which is which). Then replace the minimum element of A by the minimum element of B and the minimum element of B by the minimum element of A. Then display both arrays, each array on a separate line.

Solution:

#include <iostream>

using namespace std;

int main()

{

int i,Size_A, Size_B, A[200], B[200], Min_A, Min_B;

cout << "Enter the number of elements of A, then of B: ";

cin >> Size_A >> Size_B;

// Assign values for A.

for (i=0; i<= Size_A-1; i++)

A[i] = (i * i + 7) % 35;

// Assign values for B.

for (i=0; i<= Size_B-1; i++)

B[i] = ((i * i) + 9) % 35;

// Display A.

for (i=0; i<= Size_A-1; i++)

cout << A[i] << " ";

// Display B.

cout << endl << endl;

for (i=0; i<= Size_B-1; i++)

cout << B[i] << " ";

cout << endl << endl;

// Find the minimum of A.

Min_A = A[0];

for (i=1; i <= Size_A-1; i++)

if (A[i] < Min_A)

Min_A = A[i];

// Find the minimum of B.

Min_B = B[0];

for (i=1; i <= Size_B-1; i++)

if (B[i] < Min_B)

Min_B = B[i];

// Display the minimum of A and then of B.

cout << "Min A " << Min_A << endl;

cout << "Min B " << Min_B << endl;

// Replace the minimum of A by the minimum of B.

for (i=0; i <= Size_A-1; i++)

if (A[i] == Min_A)

A[i] = Min_B;

// Replace the minimum of B by the minimum of A.

for (i=0; i <= Size_B-1; i++)

if (B[i] == Min_B)

B[i] = Min_A;

// Display A.

for (i=0; i<= Size_A-1; i++)

cout << A[i] << " ";

cout << endl << endl;

// Display B.

for (i=0; i<= Size_B-1; i++)

cout << B[i] << " ";

cout << endl;

return 0;

}

(4) Write a C++ program with the following features:

1. The program declares a two-dimensional array, A, of two columns and 100 rows.

2. The program reads a positive integer N. N is the number of rows of A that will be processed.

3. Then the program reads A. A should be entered exactly as it looks like; i.e. each row on a separate line. The first element of each row should be the SSN of a student (assume it's an integer; so no space and dashes), and the second should be the course grade of that student. This course grade should be of type int.

4. Then pass A and the number of rows of A to a function called F.

5. F should do the following:

It finds the highest grade in A, then it moves all students who have the highest grade to the top of the array. For example, if the original A is:

111223333

78

333224444

88

222447777

94

666558888

83

999664444

94

555666666

88

Then, F should change A to

222447777

94

999664444

94

111223333

78

666558888

83

333224444

88

555666666

88

6. Then function main displays the new array neatly (each row on a different line).

Solution:

#include <iostream>

using namespace std;

void F(int [][2],int);

int main()

{

int A[100][2], N, i;

cout << "Enter the size of the array: ";

cin >> N;

// Read elements of A.

cout << "Enter the SSN followed by the grade:" << endl;

for (i=0; i < N; i++)

cin >> A[i][0] >> A[i][1];

F(A,N);

cout << endl;

// Display A.

for (i=0; i < N; i++)

cout << A[i][0] <<"

" << A[i][1] << endl;

return 0;

}

void F(int A[][2], int N)

{

int i, Max, Count =0, Temp;

// Find the maximum grade.

Max = A[0][1];

for (i=0; i < N; i++)

if (A[i][1] > Max)

Max = A[i][1];

// Now put the rows that have the maximum grade

// at the beginning.

for (i=0; i < N; i++)

if (A[i][1] == Max)

{

// Swap the elements of column 0.

Temp = A[Count][0];

A[Count][0] = A[i][0];

A[i][0] = Temp;

// Swap the elements of column 0.

Temp = A[Count][1];

A[Count][1] = A[i][1];

A[i][1] = Temp;

Count++;

}

}

(5) Write a function with the following properties:

· The name of the function is Char_to_Int.

· The function has one (input) parameter of type char (say the parameter is called C).

· Function Char_to_Int is of type int (I.e. the value returned by the function is of type int).

· If the input is one of the characters '0'…'9', then the output is the corresponding digit as integer and if the input is any other character, then the output is -1. For example, if the input is the character 7, then the output is the integer 7, and if the input is T, then the output is -1.

(6) Write a program with the following properties.

· The program has the following menu:

Press 1 to enter a string and to compute the number of vowels in the string.

Press 2 to quit.

· Read the response of the user (be careful not as an integer). If the user enters 1, then function main asks the user to enter a string, then it reads it, then it passes it to a function called Vowel_Count which will calculate the number of vowels in the input and return it by its return statement, then function main displays that, then the menu is displayed again.

· If the user enters a character different than 1,2, then a message saying "Invalid Input." is displayed and then the menu is displayed again.

· Design the menu by a switch statement.

Solution:

#include <iostream>

#include <string>

using namespace std;

int Vowel_Count(string);

void Menu();

int main()

{

string S;

char Ch;

for (;;)

{

Menu();

cin >> Ch;

switch (Ch)

{

case '1':

cout << "Enter a string: " << endl;

cin >> S;

cout << "\n\t The input line contains "

<< Vowel_Count(S) << " vowels."

<< endl << endl;

system("pause");

system("cls");

break;

case '2': exit(0);

default: cout << "Invalid input." << system("cls");

}

}

return 0;

}

void Menu()

{

cout << "Press 1 to enter a string and to compute the number of vowels in the string.\n"

"Press 2 to quit.\n\n";

}

int Vowel_Count(string ST)

{

int Count=0;

for (int i=0; i< ST.size();i++)

{

switch (ST[i])

{

case 'i': case 'I':

case 'o': case 'O':

case 'u': case 'U':

case 'a': case 'A':

case 'e': case 'E': Count++;

}

}

return Count;

}

(7) Declare a struct, call it Student, with 3 members: SSN of type string, Grade of type float, and Letter_Grade of type string. Then declare a one-dimensional array of type Student and of maximum size 100. Then ask the user to enter the actual size of the array, call it N, and then the elements of the array. Then sort the array in descending order with respect to Grade, and then display the array. For example, if the user enters the following array:

333-44-5555 80.7 B

444-55-6666 97.3 A

555-66-7777 65 D+

then after the sorting, the array should be

444-55-6666 97.3 A

333-44-5555 80.7 B

555-66-7777 65 D+

(8) A matrix (two-dimensional array) is called a magic square if

(a) It is an n by n square matrix (i.e. the number of rows is equal to n and so is the number of columns).

(b) Its elements are the numbers 1 through n2 (no repetition).

(c) The sum of the elements in each row, in each column, and in the two diagonals is equal.

For example, the following is a magic square:

16
3
2
13

5
10
11
8

9
6
7
12

4
15
14
1

Note that the two diagonals in the above matrix are the diagonal that contains the elements 16, 10, 7, 1, and the diagonal that contains the elements 13, 11, 6, 4.

Write a boolean method (call it magicSquareTest) with one parameter only which is a matrix (a two-dimensional array). The method tests whether the matrix forms a regular magic. Note that the array parameter is not necessarily a square matrix, but all rows have the same number of elements. The method returns true if the matrix is a regular magic square and false if it is not.

Put your method in a class different than the one that contains the main method. But, both classes should be in the same source file.

Write also a driver program to test your method. In your driver program, the elements and the size of the array should be entered by the user.

(9) Write a method (call it union) with two one-dimensional array parameters array1, array2, of type int. Your method finds the union of the two arrays (i.e. it combines the two arrays in one array, but there should be no repetitions in the union). The method has only two parameters (the ones described above) and it returns the union by a return statement. Note also that array1 and array2 can have different sizes.

For example, if the elements of array1 are 4,3,6,8,9,6 and the elements of array2 are 9,6,7,3,7,-3,-4,-5. Then the method should return the array whose elements are 4, 3, 6, 8, 9, 7, -3, -4, -5.

Put your method in a class different than the one that contains the main method. But, both classes should be in the same source file.

Write also a driver program to test your method. In your driver program, the elements and the sizes of the arrays should be entered by the user.

