Pointers

How to declare pointers?

DataType* pointer;

pointer is a variable storing a memory location of a variable of type DataType.

DataType can be a simple data type, a struct, a class, etc.

Example:

int a = 3;

int* pointer; 

pointer = &a;

pointer is pointing to a (i.e. pointer is storing the memory address of a).

[image: image1.png]pointer



If the memory address of pointer is 10 and the memory address of a is 17, then we have

[image: image2.png]mem. add. mem. var. name

10 pointer




cout << pointer; // Prints 17

cout << *pointer; // Prints 3 (we read the value stored in pointer which is 17, then we go to memory address 17 and read the value stored there which is 3).

· To access the variable pointed to by pointer, use *pointer.

Example 1:
int a = 3;


int* pointer = &a;

     cout << pointer << endl;


cout << *pointer << endl;


a = 7;


cout << pointer << endl;


cout << *pointer << endl;

Output:
006AFDF4

3

006AFDF4

7

  Example 2:


int* pointer;

    cout << pointer << endl; // outputs CCCCCCCC


cout << *pointer << endl; // Error

Example 3:

int a = 3;


int* pointer = &a;

     cout << pointer << endl;


cout << *pointer << endl;


*pointer = 7;


cout << pointer << endl;


cout << *pointer << endl;


cout << a << endl;

Output:

006AFDF4

3

006AFDF4

7

7

Note: *pointer = 7; represents indirect addressing of a, while a = 7; is direct addressing of a.

Note: 

cout << pointer;

prints the contents of pointer (in the example above it's the memory address of a).

cout << *pointer;

prints the contents of the variable pointed to by pointer (in the example above it's the value of a).

Example 4:

int a = 3;


int* pointer = &a;

     cout << pointer << endl;


cout << *pointer << endl;


int b = 4;


pointer = &b;


cout << pointer << endl;


cout << *pointer << endl;

Output:

006AFDF4

3

006AFDEC

4

Example 5:

int a;


int* pointer = &a;


cout << pointer << endl;


cout << *pointer << endl;


cout << a << endl;


cout << "Enter a: ";

    cin >> *pointer;


cout << pointer << endl;


cout << *pointer << endl;


cout << a << endl;

Output:

006BFDF4

-858993460

-858993460

Enter a: 9

006BFDF4

9

9

· The only literal pointer constant is 0 (null pointer - points to nothing).

pointer = 0;

Makes pointer point to nothing (not the memory location of zero).

pointer = 0 is the same as pointer = NULL (NULL is in <cstddef> header file).

· Let pointer1 and pointer2 be two pointers of the same data type. Then, you can set pointer1 = pointer2.

· *pointer is called dereferencing.

· You can compare two pointers of the same data type using ==, !=, <=, >=, <, >.

· !pointer is true if pointer is NULL (i.e. 0) and false otherwise. E.g.

if (!pointer)

is same as

if (pointer == NULL)

· Note that comparisons like

if (pointer1 == pointer 2)

compare the two pointers not what they point to. I.e., they compare the memory addresses. But,

if (*pointer1 == *pointer 2)

compares the values pointer1 and pointer2 point to.

· Let

DataType *pointer;

Then, any operation that can be applied to a variable of type DataType can be applied to *pointer.

Example:

int a = 3, b = 9;


int* p1 = &a, *p2 = &b;


cout << p1 << endl;


cout << p2 << endl;


p1 = p2; // Makes p1 point to where p2 points.


cout << p1 << endl;


cout << *p1 << endl;


cout << p2 << endl;


cout << *p2 << endl;

Output:

006AFDF4

006AFDF0

006AFDF0

9

006AFDF0

9

Example:

int a = 3, b = 9;


int* p1 = &a, *p2 = &b;


cout << p1 << endl;


cout << p2 << endl;


*p1 = *p2;


cout << p1 << endl;


cout << *p1 << endl;


cout << p2 << endl;


cout << *p2 << endl;

Output:

006AFDF4

006AFDF0

006AFDF4

9

006AFDF0

9

Example:

 int a = 3;


 int *p = &a;


 cout << &p << endl; 


 cout << p << endl; // Same as cout << &a << endl;


 cout << &a << endl; //Same as cout << p << endl;


 cout << *p << endl; // Same as cout << a << endl;


 cout << a << endl; // Same as cout << *p << endl;

Output:

006AFDF0

006AFDF4

006AFDF4

3

3

· Why pointers? Main use is dynamic variables (created during execution time - when they are needed). 

Remarks:

1. To access the place to which a pointer points to, we use the * (also called dereference) operator. This is called indirect accessing.

2. To make a pointer points to something either you assign to it the address of a variable/array or you set it equal to another pointer that is already pointing to something or by dynamic allocation (see below).

3. If pointer1 and pointer2 are pointers of the same type, then

pointer2 = pointer1;

Makes pointer2 point to where pointer1 is pointing, while 

*pointer2 = *pointer1;

copies the value pointed to by pointer1 into the value pointed to by pointer2.

Example 0:


int a = 3, *p = &a; 


cout << "&p = " << &p << endl



<< " p = " << p << endl



<< "&a = " << &a << endl



<< "&*p = " << &*p << endl



<< "*p = " << *p << endl



<< " a = " << a << endl;

Output:


&p = 006AFDF0

 
   p = 006AFDF4

&a = 006AFDF4

       &*p = 006AFDF4

 *p = 3

            a = 3


Note that p = &a = &*p, *p = a, and &p ( p ( *p.

Example 1:

int array[10];


int* pointer1 = array; // You cannot have pointer1 = &array;


cout << "Address of array: " << pointer1 << endl;


int* pointer2 = &array[0];


cout << "Address of array[0]: " << pointer2 << endl;


int* pointer3 = &array[1];


cout << "Address of array[1]: " << pointer3 << endl;


int* pointer4 = &array[15]; // Note index 15 is out of bounds!


cout << "Address of array[15]: " << pointer4 << endl;

Output:


Address of array: 006AFDD0

Address of array[0]: 006AFDD0

Address of array[1]: 006AFDD4

Address of array[15]: 006AFE0C

Remark: array and array[0] have the same address. Thus, pointer1 = array has the same effect as pointer1 = &array[0]. Now the question is: How to dereference the array? 

Example: If we have

int a[10], *p = a; 

// Remember p = a has same effect as p = &a[0]


for (int i = 0; i < 10; i++)



a[i] = 8 + i * i;


cout << *p << endl; 

// Prints a[0] (because p points to a[0]). Can't have 

// cout << *p[0]; 


cout << p[0] << endl; // Prints a[0]. Can't use *p[0].


cout << p[2] << endl; // Prints a[2]. Can't use *p[2].


Example:



int a[10] = {5,9,3,7}, *p = &a[2];



cout << p[1] << '\n' << a[1] << '\n';


Output:



7

9

Example:



int a[10];



cout << a << endl;



cout << &a[0] << endl;


Output:



006AFDD0

006AFDD0


Thus, the output for both statements is the same.


Example: An array of pointers:



int a = 4, b = 6, c = 8, *p[3];



p[0] = &a;



p[1] = &b;



p[2] = &c;



for (int i = 0; i < 3; i++)




cout << "*p[" << i << "] = " << *p[i] << endl;


Output:



*p[0] = 4

*p[1] = 6

*p[2] = 8

Example 2: The following will result in an error:


int a = 3, *p1 = &a, *p2;


p2 = &p1;


But, the following will not


int a = 3, *p1 = &a, *p2;


p2 = &*p1;


p2 = &*p1 has the same effect as p2 = &a.

Example 3: If you have


int *p1, *p2, a;


p1 = &a;


Then p2 = &a will have the same effect as p2 = p1.

Example 4:


int a = 3, b = 3, *p1 = &a, *p2 = &b;


long c = 3, *p3 = &c, *p4; 


cout << (p1 == p2) << endl;
// Displays 0


cout << (*p1 == *p2) << endl; // Displays 1


cout << (*p1 == *p3) << endl; // Displays 1


cout << (p1 == p3) << endl; // ERROR (p1 and p3 are of a different data type).


p4 = &a; // ERROR (a must be long because p4 is long)


p3 = p4; // OK, although p4 is not initialized.


p4 = p3; // OK


p4 = p1; // ERROR (p4 and p1 are of different types.)

Example 5:


int a[10], *p = a; // p points to a[0].


cout << p << endl;


p++; // Makes p point at a[1].


cout << p << endl << &a[1] << endl; // Now p = &a[1].


p += 6; // Now p points at a[7].


cout << p << endl << &a[7] << endl; // Now p = &a[7]

Example 6:

int a[10] = {-1,-2,-3,-4,-5,-6,-7,-8,-9,-10}, *p = a, *q = &a[2];

cout << "*p = " << *p << endl << "*q = " << *q << endl;

p += 3;

q += 3;

cout << "After p += 3 and q += 3:\n\t *p = " 


<< *p << endl << "\t *q = " << *q << endl;

cout << "\t p[0] = " << p[0] << endl;

cout << "\t a[0] = " << a[0] << endl;

cout << "\t q[0] = " << q[0] << endl; 

cout << "\t p[6] = " << p[6] << endl;

cout << "\t a[9] = " << a[9] << endl;

cout << "\t q[4] = " << q[4] << endl;

Output:

*p = -1

*q = -3

After p += 3 and q += 3:

         *p = -4

         *q = -6

         p[0] = -4

         a[0] = -1

         q[0] = -6

         p[6] = -10

         a[9] = -10

         q[4] = -10

Example 7: Pointers to structs/classes


struct Student


{



string name;



int ssn;


} s1;


s1.name = "John Smith";


s1.ssn = 999887777;


Student *pointer = &s1;


cout << "pointer = " << pointer << endl;


cout << "&s1 = " << &s1 << endl;


cout << "(*pointer).name = " 

<< (*pointer).name << endl;


cout << "(*pointer).ssn = " << (*pointer).ssn << endl;


// *pointer.name or *pointer.ssn : ERROR


// *pointer.name is same as *(pointer.name)


// *pointer.ssn is same as *(pointer.ssn)


// *pointer.name and *pointer.ssn are wrong because


// pointer.ssn and pointer.name are not pointers


cout << "pointer -> name = " 

<< pointer -> name << endl;


cout << "pointer -> ssn = " << pointer -> ssn << endl; 


// pointer.ssn or pointer.name : ERROR


// s1 -> name : ERROR

Output:

pointer = 006AFDD8

&s1 = 006AFDD8

(*pointer).name = John Smith

(*pointer).ssn = 999887777

pointer -> name = John Smith

pointer -> ssn = 999887777

Remark: *pointer.name is interpreted as *(pointer.name). That's why the parenthesis are important in the previous example. Instead of using the parenthesis, you can use the arrow operator ->. E.g. 

(*pointer).name can be written as pointer -> name.

Dynamic Data

· Dynamic variables are variables allocated and deallocated at execution (run) time by using the operators new and delete. Note that memory space is allocated for static variables/arrays at compilation time).

· When the program needs an additional variable, it allocates the variable by using new and when it no longer needs the variable, it deallocates it by using delete. 

· Thus, unlike static variables whose life time is the execution time of the program/function, the life time of a dynamic variable is the period from creating it using new to deleting it using delete.

· A dynamic variable has no name and cannot be addressed directly.

· A dynamic variable is indirectly addressed through the pointer returned by the new operator.

· The new operator is used either to allocate a single variable or an array. It is used as follows

new DataType

or

new DataType[arraySize] 

· arraySize above is an integer constant/variable/expression. E.g.

int* a = new int;

int* array = new int[10];

· To free the memory allocated for the above variable/array (i.e. to deallocate them), use

delete a;

delete [] array;

· The new operator creates an uninitialized variable (resp. array) of the specified type and returns a pointer to the variable (resp. the base address of the array).

· The base address of the array is the address of the first element of the array.

· If there is no memory left for dynamic data, an attempt to create dynamic data will result in an error.

· Variables created by the new operator are placed in a place of memory called heap.

· The delete operator returns the memory allocated by the new operator to the heap.

· If pointer is a pointer pointing to a dynamic variable/array, then delete pointer does not delete the pointer. It deletes the variable/array the pointer is pointing to.

· The delete operator can be applied ONLY to a pointer value created by the new operator.

· When you create dynamic variables/arrays, you must delete them when you longer use them. Failing to do so, results in memory leak.

· Note that a pointer variable points to the first element of the array.

· Suppose you have the following:

int *p1 = new int, *p2 = new int;

.

.

.

p2 = p1;

The last assignment statement causes memory leak, because the variable that was pointed to originally by p2 is no longer accessible (now p2 is pointing to the same variable pointer1 is pointing to), but memory is still reserved for it. To avoid memory leak, you should replace the last assignment statement by

delete p2;

p2 = p1;

Example 1: The following program creates a dynamic array. The size of the array is entered at execution time:

int n, *array;


cout << "Enter size: ";


cin >> n;


array = new int[n];

 Example 2: You cannot enter the size of a C-style (static) array during execution time:

int n;


cout << "Enter size: ";


cin >> n;


const int m = n; // OK


int array[m]; // ERROR

Example 3: Example on creating, processing, and deallocating dynamic arrays:

int n, *array;


cout << "Enter size: ";


cin >> n; // Suppose the user entered 4


array = new int[n];


for (int i = 0; i < n; i++)



array[i] = i * i; // It's wrong to use *array[i]


cout << array[n-1] << endl; // Displays 9 if n = 4


delete [] array;

Remark: In the above example cout << *array displays array[0].

You could also do the above example as follows:

int *n , *array;


cout << "Enter size: ";


n = new int;


cin >> *n; // Suppose the user entered 4


array = new int[*n];


for (int i = 0; i < *n; i++)



array[i] = i * i; // It's wrong to use *array[i]


cout << array[*n-1] << endl; // Displays 9 if n = 4


delete n;


delete [] array;

Example 4: Example on creating, processing, and deallocating dynamic variables:


int *p;


p = new int;


cout << "Enter an integer: ";


cin >> *p; // It is wrong to write cin >> p;


cout << "You've entered: " << *p << endl;


delete p; // It's wrong to write delete *p;

Exercise: Let a = -5, b = -7, and c = -9, be variables of type int and let p1, ... , p6 be pointers of type int, and suppose that the memory addresses reserved for them are as follows:

 [image: image3.png]mem. add.

mem.
cont.

var.

name




Find the output of the following:

p1 = &a; p2 = &b; p3 = &c;

cout << p1 << endl << &a << endl << &p1


<< endl << *p1 << endl << a << endl


<< &*p1 << endl;

p1 = &b;

cout << p1 << endl << &a << endl << &p1


<< endl << *p1 << endl << a << endl


<< &*p1 << endl;

p3 = p2;

cout << p3 << endl << &b << endl << &p3 


<< endl << *p3 << endl << &*p3 << endl;

p4 = &a; p5 = &c;

*p4 = *p5;

cout << p4 << endl << p5 << endl


<< *p4 << endl << *p5 << endl


<< a << endl << c << endl


<< &*p4 << endl << &*p5 << endl;

b = 13;

cout << *p3 << endl << *p2 << endl;

*p3 = 99;

cout << b << endl << *p2 << endl;

Solution:

3

3

12

-5

-5

3

4

3

12

-7


-5

4

4

4

19

-7

4

3

8

-9

-9

-9

-9

3

8

13

13

99

99

Exercise: Let
int *p, a = 8;

long *q, b = 3;

p = &a; q = &b;

Decide whether each of the following is valid or not:

1) q = &a;

2) q = p;

3) *q = *p;

Arrays as function arguments/parameters:

When you pass an array to a function, you actually pass a pointer to the first element of the array. Thus, the name of the array that you pass is actually a pointer whose value is the base address of the array (i.e. the address of the first element of the array).

Example: The following three programs are equivalent. Examine them carefully. The output of each one of them is

7
8
9

(1) 


#include <iostream>

using namespace std;

void f(int[],int); // Can replace with void f(int*, int)

int main()

{


int a[] = {6,7,8};


f(a,3); // Can replace array a with a pointer to a.


for (int i = 0; i < 3; i++)



cout << a[i] << "\t";


cout << endl;

    
return 0;

}

void f(int a[], int size) // Can replace with void f(int* a, int size)

{


for (int i = 0; i < size; i++)



a[i]++;

}

(2)


#include <iostream>

using namespace std;

void f(int*,int); // Can be replaced with void f(int[],int)

int main()

{


int a[] = {6,7,8};


f(a,3); // Can replace a with a pointer to a.


for (int i = 0; i < 3; i++)



cout << a[i] << "\t";


cout << endl;

    
return 0;

}

void f(int* a, int size) // Can be replaced with void f(int a[],int size)

{


for (int i = 0; i < size; i++)



a[i]++;

}

(3) 


#include <iostream>

using namespace std;

void f(int*,int); // You could replace this line with




// void f(int[], int);

int main()

{


int a[] = {6,7,8}, *pointer = a;


f(pointer,3); // You could replace this line with f(a,3);


for (int i = 0; i < 3; i++)



cout << a[i] << "\t";


cout << endl;

    
return 0;

}

void f(int* a, int size) // You could replace this line with





// void f(int a[], int size)

{


for (int i = 0; i < size; i++)



a[i]++;

}

Example:

cout << "int bytes: " << sizeof(int) << endl;

cout << "long bytes: " << sizeof(long) << endl;

cout << "float bytes: " << sizeof(float) << endl;

cout << "double bytes: " << sizeof(double) << endl;

system("pause");

cout << "\n\nAn array of int: \n";

int a[4], *p = a;

for (int i = 0; i < 3; i++)


cout << &a[i] << "\t" << &p[i] << endl;

cout << "\n\nAn array of long: \n";

long a1[4], *p1 = a1;

for (i = 0; i < 3; i++)


cout << &a1[i] << "\t" << &p1[i] << endl;

cout << "\n\nAn array of float: \n";

float a2[4], *p2 = a2;

for (i = 0; i < 3; i++)


cout << &a2[i] << "\t" << &p2[i] << endl;

cout << "\n\nAn array of double: \n";

double a3[4], *p3 = a3;

for (i = 0; i < 3; i++)


cout << &a3[i] << "\t" << &p3[i] << endl;

Output:

int bytes: 4

long bytes: 4

float bytes: 4

double bytes: 8

An array of int:

006BFDE8        006BFDE8

006BFDEC        006BFDEC

006BFDF0        006BFDF0

An array of long:

006BFDD0        006BFDD0

006BFDD4        006BFDD4

006BFDD8        006BFDD8

An array of float:

006BFDBC        006BFDBC

006BFDC0        006BFDC0

006BFDC4        006BFDC4

An array of double:

006BFD98        006BFD98

006BFDA0        006BFDA0

006BFDA8        006BFDA8

Example: How to return an array by a return statement? 

#include <iostream>

using namespace std;

int* f(int size);

int main()

{


int *p;


p = f(4);


for (int i = 0; i < 4; i++)



cout << p[i] << '\t';


cout << endl;

    return 0;

}

int* f(int size)

{


int b[4] = {0};


b[2] = 99;


return b;

}
Output:

0 4479881 4205671 1245056
So, what is the problem?

Solution:

#include <iostream>

using namespace std;

int* f(int size);

int main()

{


int *p;


p = f(4);


for (int i = 0; i < 4; i++)



cout << p[i] << '\t';


cout << endl;

    return 0;

}

int* f(int size)

{


int *b;


b = new int[4];


for (int i = 0; i < 4; i++)



b[i] = 0;


b[2] = 99;


return b;

}

Output:

0       0       99      0

� EMBED PBrush  ���





� EMBED PBrush  ���





� EMBED PBrush  ���








1
19

[image: image4.png]pointer



[image: image5.png]mem. add. mem. var. name

10 pointer



[image: image6.png]mem. add.

mem.
cont.

var.

name



_1124896418

_1125126423

_1124865287

