Abstract data type: data type whose properties (data and operations) are defined/specified without referring to how it will be implemented. E.g. the int data type and the UnsortedList class.

Generic data type: data type for which the operations are defined but the types of the items being manipulated are not.

Encapsulation (hiding information): the separation of the representation of the data from the applications that use the data.

Composite data type: abstract data type that may contain component elements.

Composition: A class contains a data member that is an object of another class.

Inheritance: a descendant class inherits the properties (data and operations) of its ancestor class.

Base class/super class: the class inherited from.

Derived class/subclass: the class that inherits.

Polymorphism (Greek - means many forms): the ability to determine (during compilation or run-time) which of several operations with the same name is appropriate. A polymorphic function/operator has many forms

Binding time: the time at which a name/symbol is bound to the appropriate code.

Static binding: the compile-time determination of which implementation of an operation is appropriate.

Dynamic binding: the run-time determination of which implementation of an operation is appropriate.

Overloading: having more than one function/operator with the same name.

Object-Oriented Programming (OOP):

OOP has 3 features:

(1) Encapsulation.

(2) Inheritance.

(3) Polymorphism.

Comparison of Algorithms

· How about executing the two programs and computing their execution times?

Problem: Execution times differ from one computer to another.

· Better solution: Express the running time as a function of the size of the input.

· The size of the input is usually denoted by N.

· In our UnsortedType/SortedType N = length.

· Big-O (order of magnitude): An approximation of the above function.

· The order of magnitude of a function is determined by the term in the function that increases fastest than the other terms as the size of the input gets big.

· E.g. f(x) = x5 + 4 x2 + 9. f(x) is of order x5 (i.e. f(x) is O(x5)).

Common Order of Magnitude

O(1): Called bounded/constant time. The amount of work is bounded by a constant (does not depend on the size of the problem).

O(log2 n): Logarithmic time. The amount of work depends on the log of the size of the problem. At each step, the amount of work is cut in half.

O(N): Called linear time. The amount of work is equal to a constant times the size of the input.

O(N log2 N)

O(N2): Quadratic time.

O(N3): Cubic time.

O(2N): Exponential time.

Examples:

1) O(N) Example: A here is a one-dimensional array of size N.

int i; sum = 0;

for (i = 0; i < N; i++)

sum = sum + A[i];

Also, linear search.

2) O(N2) Example: Selection Sort.

3) O(log2 N) Example: Binary Search.

4) O(NM): A, B and C here are two-dimensional arrays of M rows and N columns.

int i, j, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

C[i][j] = A[i][j] + B[i][j];

5) O(N3): N here is a positive integer.

int i, j, k, sum = 0;

for (i = 1; i <= N; i++)

for (j = 1; j <= N; j++)

for (k = 1; k<= N; k++)

sum = sum + i + j + k;

PAGE
2

