Friends

Definition and Facts:

A function or a class can be declared to be a friend of another class. If class A declares a function or a class/struct (call this function or this class/struct B) to be its friend, then B can access all members of A including the private members of A. We'll revisit friends (especially friend classes) later in the semester. A function is declared a friend of the class by proceeding the function prototype of the function by the keyword "friend" and that function prototype can be put anywhere in the specification part of the class. But, the keyword "friend" is not put in the definition (i.e. implementation part) of the class. Some operators need to be declared friends to be overloaded, and in some compilers, that does not work with "using namespace std". To make it work, you need to get rid of "using namespace std" and use the ".h" header files or use a service back. Class A can declare Class/struct/Function B to be its friend anywhere in the specification part of A (i.e. either at the beginning or under private or under protected or under public), but the most common place for such a declaration is at the beginning. Thus, friends are not affected by keywords like "private", "public", or "protected". If A considers B its friend, then that does not necessarily imply B considers A its friend. In other words, friendship is not commutative. Friendship is not transitive. A friend function can only be declared in a class. A friend function of a class is not a member of the class and they are not called as members by using the dot operator or ->. If two functions/operators have the same name and one of them is a friend of a class, then the other one is not a friend of the class unless it's declared so (i.e. declaring one of the functions as a friend does not make the other a friend). A member of a class cannot be a friend of the same class (and why to make it a friend?!). But a method (call it g and assume it's void and has no parameters) in a class (call it B) can be a friend of another class (call it A). In this case, all you need to do is to put the following statement in the specification part of A:

friend void B::g();

Use friend functions only if necessary. If you can do the same job by a public method and by a friend function, do it by the public method not by the friend function. But, there are cases in which you have no choice but to use friend functions as it's the case in overloading the extraction operator >> and the insertion operator <<.

Friend functions of class A need to use the dot operator to access members of A. Only members of A don't need to use the dot operator to access members of A.

Friend classes will be discussed later in the semester.

Why friends?

Here are some of the reasons:

(1) Some operators cannot be overloaded as member functions and those operators may need to access private members of a class. Such operators must be overloaded as friends. Examples: <<, >>.

(2) If class A declares class B as its friend, then only class B (and other functions/classes that are declared as friends of A) can access all members of A (including private). Other classes cannot access private members of A. But, if all members of A are made public, then every other class will have access to all members of A no matter whether it's a friend of A or not.

Examples on Friends:

Example on a friend function:
#include <iostream>

using namespace std;

class SomeClass

{

friend void friendFunction();

private:

int pri;

public:

SomeClass(int a, int c) {pri = a; pub = c;};

int pub;

};

void friendFunction()

{

SomeClass s(1,3);

cout << s.pri << endl; // OK

cout << s.pub << endl; // OK

}

void NotAFriend()

{

SomeClass s(1,3);

//
cout << s.pri << endl; // Error

cout << s.pub << endl; // OK

}

int main()

{

NotAFriend();

friendFunction();

return 0;

}

Example on a friend class and a friend struct:

#include <iostream>

using namespace std;

class SomeClass

{

friend struct FriendStruct;

friend class FriendClass;

private:

//friend class FriendClass;

int pri;

public:

SomeClass(int a, int c) { pri = a; pub = c;};

int pub;

// friend class FriendClass;

};

class independent1

{

public:

void print()

{

SomeClass s(1,3);

//cout << s.pri << endl; // Error, because pri is private for SomeClass

cout << s.pub << endl; // OK, because pub is public for SomeClass

}

};

class FriendClass

{

public:

void print()

{

SomeClass s(1,3);

cout << s.pri << endl; // OK

cout << s.pub << endl; // OK

}

};

struct FriendStruct

{

void print()

{

SomeClass s(1,3);

cout << s.pri << endl; // OK

cout << s.pub << endl; // OK

}

};

int main()

{

//SomeClass s1(1,3);

FriendClass f;

f.print();

FriendStruct fs;

fs.print();

return 0;

}

Example on Constructors and Friend Functions:

#include <iostream>

using namespace std;

void m();

// Specification Part of the Class (Declaration of the Class)

class Alpha

{

private:

friend void h();

int a;

public:

// static Alpha(); // Wrong

// Alpha() const; // Wrong

Alpha(); // Default constructor bec no parameters

Alpha(int aa); // Non-defualt constructor bec has parameters

void f();

void g();

int c;

}; // Don't forget semicolon

int main()

{

// Alpha R; // OK

Alpha R(5); // OK

// cout << R.a << endl; // Wrong bec a is private

// R.f(); // OK

h();

m();

return 0;

}

// Implementation part of class Alpha

Alpha::Alpha()

{

cout << "a = " << a << endl;

a = 0;

cout << "a = " << a << endl;

}

Alpha::Alpha(int aa)

{

cout << "a = " << a << endl;

a = aa;

cout << "a = " << a << endl;

}

void Alpha::f()

{

// a++; // OK

// g(); // OK

/* Alpha T;

T.g();

T.a++;
// OK */

cout << "I'm f." << endl;

}

void Alpha::g()

{

cout << "I'm g." << endl;

}

void h()

{

// cout << a << endl; // Wrong

/* Alpha T;

cout << "from h: a = " << T.a << endl;

T.a++;

cout << "from h now a = " << T.a << endl;

OK */

}

void m()

{

// cout << a << endl; // Wrong

/* Alpha T;

cout << "from m: a = " << T.a << endl;

T.a++;

cout << "from m now a = " << T.a << endl;

WRONG */

/* Alpha T;

T.c = 3;

cout << "from m: c = " << T.c << endl;

OK */

}

