Const and static

Topics:

1) Const methods.

2) Static methods and static data members.

Const and Static Methods

Const Methods:

Adding the modifier const at the end of the function heading and prototype of a method (must be in both) prevents the method from modifying the regular data members (but it still can access regular data members and can access static data members and can modify static data members if they are not named constants). A const method of a class cannot call a non-const method that depends on an instance of the class (but it can call static methods because static methods don't depend on instances of the class). The modifier const does not apply to constructors and does not apply to static methods or non-member functions (this means we cannot add the modifier const at the end of the function prototype and function heading of a constructor or a static method or a non-member function). Note that adding the work "const" at the beginning of a method's prototype and heading does not make the method a const method (i.e. the keyword "const" has to be added at the end of the function's prototype and header). A regular method can access a const method.

Why const methods? To prevent the method from changing the regular data members (e.g. accidently).

Static Methods:

Adding the keyword static at the beginning of the function prototype of a method (it cannot be put in the function definition) means all instances/objects of the class will access/share the same copy of this static method (if a method is non-static, then every instance/object of the class has its own copy of the method). A static method can call only static methods. A const method can call static methods. A regular method can call static methods. The keyword "static" does not apply to constructors and does not apply to const methods, but it can be used with non-member functions (this means we cannot add the keyword "static" at the beginning of the function prototype of a constructor or a const method). Note that "static" is put at the beginning.

Static Data Members:

Definition: A variable for which memory is allocated at the block entry and freed at the block exit is called an automatic variable. A static variable is a variable for which memory remains allocated during the execution of the program. Global variables are static and variables declared in a block are automatic unless they are declared static by adding the keyword static at the beginning of the declaration of the variable.

Adding the keyword static at the beginning of the declaration of a data member of a class (it cannot be put in the implementation part) means all instances/objects of the class will access/share the same copy of this static data member (if a data member is not static, then every instance/object of the class has its own copy of the data member). A static method can use only static data memebrs and it can modify data members if they are static and not named constants. A const method can use static data members and it can modify static data members if they are not named constants. A regular method can use static data members and it can modify static data members if they are not named constants. A data member can be declared to be static and named constant at the same time (but the keyword "const" is put at the beginning before or after static). In some versions of C++, a const static (or static const) data member can be initialized in the specification part of the class (remember regular data members of the class and static data members cannot be initialized in the specification part), but in other versions that is not allowed (in that case, the const static data member can be initialized in the implementation part of the class; even the data type bool is not supported in some older compilers; in that case use #define or enumerated data types; also templates may not be fully supported by older compilers). For example, in some versions of C++, we're allowed to have a statement like this

static const int count = 5;

in the specification part of the class. In other versions of C++ (older compilers), that is not allowed (even in those compilers that allow it, it may restricted to integral data types). But, we are allowed to have something like this:

static const int count;

in the specification part of the class and the following in the implementation part:

const int Rectangle::count = 5;

(assuming the name of the class is Rectangle). By the way, for static const data members, you can switch the keywords "const" and "static". You cannot initialize a data member of a class in the implementation part unless it's static.

A static method/data member of a class can be called/used without creating an object of the class. For example, if myMethod is a static method of class MyClass (assume the method has no parameters and it's of type int, then you can call the method as follows

cout << MyClass::myMethod();

A static method/data member can also be invoked by an instance of the class. A static member does not allow the use of the keyword "this". Declare a method/data to be static if it does not use instance methods/data. The keyword "static" can be used with non-member functions and with non-member variables/named constants.

Why static? For example to declare a named constant in a class or to keep track of how many objects are created from a class (remember all objects created from a class share the same static member and this member can be invoked without the need to create an object).

Remarks:
(1) If you need to initialize a data member of a class in the implementation part of the class, then that data member must be static.

(2) If you want to have a named constant in your class, then that named constant must be static. In some compilers, you can assign a value for this named constant in the specification part, but in other compilers you cannot. In this case, you must initialize it in the implementation part.

Example on const and static:

/* Note: I'll call a method (member function) regular if it is not const

and not static

*/

#include <iostream>

using namespace std;

class Circle

{

private:

float radius;

static int instances;

public:

//Circle(); // Must remove because we already have a default constructor.

Circle(float r = 0); // Works a default and non-default constructor

float area() const;

void setRadius(float r);

float getRadius() const;

static int getInstances();

void f();

};

int main()

{

Circle c1;

cout << c1.area() << endl;

Circle c2(10);

cout << c2.area() << endl;

// cout << Circle::area() << endl; // ERROR

// Circle c2(100); // Error bec c2 is already defined

c2.setRadius(100);

cout << c2.area() << endl;

cout << c2.getRadius() << endl;

// cout << c1::getInstances() << " objects were created.\n"; // ERROR

cout << Circle::getInstances() << " objects were created.\n";

//cout << c1.getInstances() << " objects were created.\n"; // OK

//cout << c2.getInstances() << " objects were created.\n"; // OK

return 0;

}

/*Circle::Circle()

{

radius = 0; instances++;

}*/

Circle::Circle(float r)

{

instances++;

/* cout << instances << " instances/objects of Circle "

<< "are created so far.\n";

*/

if (r >= 0)

radius = r;

else

{

cout << "Invalid Radius. We'll set the radius to zero.\n";

radius = 0;

}

}

float Circle::area() const

{

// radius = 0; // ERROR, because radius is regular.

// instances = 0; // OK, because instances is static

// f(); // ERROR

// cout << getInstances(); // OK

// cout << getRadius() << endl; // OK

return 3.14 * radius * radius;

}

void Circle::setRadius(float r)

{

if (r >= 0)

radius = r;

else

{

cout << "Invalid Radius. We'll set the radius to zero.\n";

radius = 0;

}

}

float Circle::getRadius() const

{

return radius;

}

void Circle::f()

{

radius = 0;

}

int Circle::instances = 0; // Only static members can be initialized this way.

int Circle::getInstances()

{

// cout << area(); // ERROR because area is non-static.

// cout << radius << endl; // ERROR because radius non-static.

// instances++; // OK

return instances;

}
1
4

