Structs and Classes

Topics:

(1) Review of classes and structs.

(2) Constructors.

(3) Dividing the program into 3 parts: specification (header file), implementation (cpp file added to the project), and driver (cpp file).

(4) Access methods (get/set member functions).

Question: What are classes?

Example on a class with no constructors but with an initialization method to replace the constructor:

#include <iostream>

using namespace std;

// Definition of class Rectangle begins here.
// Specification part of class Rectangle
class Rectangle

{

private:

float Length,Width;

public:

void Initialize(float L, float W);

// The above function will be replaced by a constructor.

float Area();

}; // Semicolon is needed.

// Declaration of class Rectangle ends here.

int main()

{

float Len, Wid;

cout << "Enter the length followed by the width: ";

cin >> Len >> Wid;

Rectangle Rec;

Rec.Initialize(Len,Wid);

cout << "The area is: " << Rec.Area() << endl;

return 0;

}

// Implementation part of class Rectangle
// Definition of function Initialize of class Rectangle

void Rectangle::Initialize(float L, float W)

{

if (L >= 0)

Length = L;

else

Length = 0;

if (W >= 0)

Width = W;

else

Width = 0;
}

// Definition of function Area of class Rectangle

float Rectangle::Area()

{

return Length * Width;

}

Question:

- What will happen if we put the following line after Line * ?

cout << MyClass.length << endl;

- Now make Length public, what will be the output if you included the above line in the indicated location?

Definition: function heading/header, function declaration/prototype, function's body, instance/object.
Definition: a member function is called a method. Members that are not functions are called data (or data members).

Notation: Regular method (a method with no words like static or const), const method a method with the word const put at the end of the method prototype and definition.

Definition: The specification part of the class (also called the declaration of the class) is the part where the class is declared (i.e. where the methods are declared and the data members are declared or friends are declared). The implementation part of the class is the part where the methods are defined (i.e. where their bodies are wrote) and where the data members are initialized.
Remarks about structs and classes:

1) Classes and program can have a function, same name, same parameters, and same type.

2) A constructor is a special class function that is used to initialize an object automatically when the object is defined. The constructor will initialize the data members each time an object is defined for the class.

3) The data members of a class are usually declared private and the methods (function members) are usually declared public.

4) Private members of a class can be accessed only by members of the class and by friend functions/classes. Public members of a class can be accessed by members and nonmembers. They are visible wherever the class is visible.

5) The order of the public and private sections of a class is not important.

6) A particular instance of a class is called an object or instance of the class.

7) A software that declares and uses objects of a class is called a client of the class. Sending a message means calling a public method.

8) To prevent a method (member function of a class) from changing the data members of the class, add the modifier const to the end of the function heading in both the specification and implementation parts (see below). Be careful, do not write const at the beginning. That will not achieve what you want. Note that the modifier const works only on functions that are members of classes. It does not work on independent functions. A const method of a class cannot call a non-const method on the same instance of the class. But, it can use static members, because they don't depend on instances of the class. The word const must follow the function prototype and the function heading (i.e. it appears in the specification and the implementation parts).

9) Some people use the term methods to denote public member functions of a class and the term instance variables to denote private data members of the class.

10) Operations valid on an entire struct or entire class: assignment to another struct/class variable of the same type, pass as an argument (by value or reference) to another functions, return by a function return statement. Questions: How can you make a function return more than one value (a) by a return statement and (b) without a return statement? Can a void function have a return statement?
11) Usually an instance/object of the class is drawn as a circle, data members drawn as rectangle inside the circle, and methods are drawn as arrows outside the circle but heading to the circle. Other people draw objects differently.

12) Some features of C++ are valid in some versions of C++ and some are not. This is probably why there is confusion and contradictory stuff in many books.

13) Members of a class are visible (accessible) anywhere in the class (i.e. they are global for the class). Thus, any member of the class can access any other member of the same class no matter whether the involved members are public or private. Thus, any member function (we call it method) of the class has the power to change or use any data member (non-function members) of the class.

14) Say the private members are private with respect to the outsiders not with respect to members of the class. But also the class can grant a function/class access to its private members by declaring that function as a friend (we'll discuss that later).
15) Class objects (instances) have their own copies of non-static members, but there is only one copy of a static member, which means all instances (objects) of the class share that copy.

16) Data members of a class are usually made private. Member functions of a class are usually not private unless they are needed only internally in the class (i.e. they are needed only by a constructor or by other members of the class).

17) Since data members are usually private, to access them from the driver program, you need to write set/get functions as members of the class to access these private data members, or to make such set/get functions friends of the class. Such functions are called access functions.

18) A member of the class does not need the creation of an instance/object of the class to access members of the class (i.e. it does not need the dot member selection operator to access other members). Any member of the class (data member or method) is global for the class, which means any member of the class can access any other member no matter whether it's private or not. Friend functions need an instance/object of the class to access members of the class.

19) For structs, default: public. For classes, default: private. This means if you list a member in a class at the beginning and not under private, public, or protected, then that member will be private, but in the struct it will be public.

20) Cannot initialize data members of a class in the declaration (specification part) of the class. But, in some versions of C++, you can initialize a static const data member in the specification/declaration part of the class.

21) To make all objects/instances of a class access the same copy of a method/data member, declare the method/data member to be static. Such a method/data member can be accessed without creating an object of a class (it can also be accessed via an object of the class). Remember if a method/data member is not static, then each object of the class has its own copy of this method/data member.

22) You can insert the name of the class and the scope operator before the name of a member of the class in the specification part of the class, but there is no need to do that.

Constructors: A constructor is a special class function that is used to initialize an object automatically when the object is defined. The constructor will initialize some/all of the data members each time an object is defined for the class.

Why constructors?

Here is an important reason: to initialize an object (all or some of the members) automatically when the object is defined.

Remarks about Constructors:

1. Constructors are used to initialize objects (i.e. data members).

2. The name of the constructor must be the same as the name of the class it's member of.

3. The constructor must be public.

4. The constructor function cannot be called used the dot notation.

5. The constructor cannot have a return type (including void).

6. The constructor can have parameters.

7. A constructor can be overloaded.

8. Modifiers such as const and keywords such as static do not apply to constructors.

9. A default constructor is a constructor that has no parameters. A non-default constructor is a constructor with parameters. If your class has no constructors at all, the compiler will generate a default constructor that does nothing. If the name of your class is Alpha and if your class has no constructors at all or if it has a default constructor (it may have other constructors), then we can create an instance of the class as follows:

Alpha R;

Otherwise we cannot. But, you can have a non-default constructor in your class and make it work as default constructor also by initializing all the parameters of this non-default constructor in the specification part of the class (we'll discuss default arguments later).

10. A program cannot have more than one default constructor. Why?

11. If you declare an array of class objects and the class has constructors but no default constructor (a constructor with no parameters), you'll have a compilation error (because the default constructor is invoked for every element in the array).

Example on a class with a constructor (this constructor replaces the Initialize method in the previous example): Program declares a class called Rectangle which contains a member function for computing the area of the rectangle and a constructor for initializing the data members of the class.

#include <iostream>

using namespace std;

// Definition of class Rectangle begins here.
// Specification part of class Rectangle
class Rectangle

{

private:

float Length, Width;

public:

Rectangle(float L, float W); //Prototype for the constructor.This is Line*

float Area();

}; // Semicolon is needed.

// Declaration of class Rectangle ends here.

int main()

{

float Len, Wid;

cout << "Enter the length followed by the width: ";

cin >> Len >> Wid;

Rectangle Rec(Len,Wid); // Line **

cout << "The area is: "

<< Rec.Area() << endl;

return 0;

}

// Implementation part of class Rectangle
// Definition of the constructor of class Rectangle

Rectangle::Rectangle(float L, float W)

{

if (L >= 0)

Length = L;

else

Length = 0;

if (W >= 0)

Width = W;

else

Width = 0;
}

// Definition of function Area of class Rectangle

float Rectangle::Area()

{

return Length * Width;

}

Separation of Class Specification and Class Implementation

Although you can put the class specification (the declaration of the data members and the prototypes of the methods) and the class implementation (the definition of the methods) in one file, usually the specification is put in a header file and the implementation in a .cpp file with the same name as the header file (e.g. if the header part that contains the specification is "Rectangle.h", then the file containing the implementation is "Rectangle. cpp". There should be no executable statements in "Rectangle.h". The driver program is usually in another cpp file (let's call it driver.cpp). In both Rectangle.cpp and driver.cpp, you must put at the top

include "Rectangle.h". Thus, the previous example is usually written as follows:

Header File Rectangle.h (Class Specification):

// Definition of class Rectangle begins here.
class Rectangle

{

private:

float Length,Width;

public:

Rectangle(float L, float W); //Prototype for the constructor. This is Line*

float Area();

}; // Semicolon is needed.

// Declaration of class Rectangle ends here.

File Rectangle.cpp (Class Implementation):

#include "Rectangle.h"

// Definition of the constructor of class Rectangle

Rectangle::Rectangle(float L, float W)

{

Length = L;

Width = W;

}

// Definition of function Area of class Rectangle

float Rectangle::Area()

{

return Length * Width;

}

Example on Dividing the Program into 3 Parts: In the previous example, we should have 3 files.
(1) File Circle.h

class Circle

{

private:

float radius;

public:

Circle(); // default constructor

Circle(float r); // non-default constructor

float area();

void setRadius(float r);

float getRadius();

};
(2) File Circle.cpp
#include <iostream>

using namespace std
#include "Circle.h"

Circle::Circle()

{

radius = 0;

}
Circle::Circle(float r)

{

if (r >= 0)

radius = r;

else

{

cout << "Invalid Radius. We’ll set the radius to zero.\n";

r = 0;

}
}

float Circle::area()

{

return 3.14 * radius;

}

void Circle::setRadius(float r)

{

radius = r;

}

float Circle::getRadius()

{

return radius;

}
(3) Driver.cpp

#include <iostream>

#include "Circle.h"

using namespace std;

int main()

{

Circle c1;

cout << c1.area() << endl;

Circle c2(10);

cout << c2.area() << endl;

// Circle c2(100); // Error bec c2 is already defined

c2.setRadius(100);

cout << c2.area() << endl;

cout << c2.getRadius() << endl;

return 0;

}

Example on Structs and Classes: What is the output of the following program?

#include <iostream>

using namespace std;

float Area();

// Definition of class Rectangle begins here.

class Rectangle

{

private:

float Length,Width;

public:

Rectangle(float L, float W); // Prototype for the constructor

float Area();

}; // Semicolon is needed.

// Definition of class Rectangle ends here.

// Definition of struct Circle begins here.

struct Circle

{

private:

float Radius;

public:

Circle(float R); // Prototype for the constructor

float Area();

}; // Semicolon is needed.

// Definition of struct Circle ends here.

float a = 7;

int main()

{

float a, b;

cout << "a followed by b ";

cin >> a >> b;

Rectangle Rec(a,b);

Circle Circ(a);

cout << Rec.Area() << endl;

cout << Circ.Area() << endl;

cout << Area() << endl;

return 0;

}

// Definition of function Rectangle of class Rectangle

Rectangle::Rectangle(float L, float W)

{

Length = L;

Width = W;

}

// Definition of function Area of class Rectangle

float Rectangle::Area()

{

return Length * Width;

}

// Definition of function Circle of class Circle

Circle::Circle(float R)

{

Radius = R;

}

// Definition of function Area of struct Circle

float Circle::Area()

{

return 3.14 * Radius * Radius;

}

// Definition of function Area begins here

float Area()

{

return a*a;

}

Access Methods

Why access methods?

To access (set or get) the value of a data member of a class. Remember data members can be initialized by constructors. This happened when you declare the object. If you want to change the value of a private data member after that, then you can do that by a set member function, and if you want to access the value of a data member, then you can do that by a get member function. Such functions don't have to be called get and set, but most people use such names.

Class Rectangle with an Access Method:

Since the private members are accessible only by members of the class (or friends of the class), you need access functions to access them (if you need that).

Example on Constructors and Set and Get Functions:

#include <iostream>

using namespace std;

class Circle

{

private:

float radius;

public:

Circle(); // default constructor

Circle(float r); // non-default constructor

float area();

void setRadius(float r);

float getRadius();

};

int main()

{

Circle c1;

cout << c1.area() << endl;

Circle c2(10);

cout << c2.area() << endl;

// Circle c2(100); // Error bec c2 is already defined

c2.setRadius(100);

cout << c2.area() << endl;

cout << c2.getRadius() << endl;

return 0;

}

Circle::Circle()

{

radius = 0;

}

Circle::Circle(float r)

{

radius = r;

}

float Circle::area()

{

return 3.14 * radius;

}

void Circle::setRadius(float r)

{

if (r >= 0)

radius = r;

else

radius = 0;
}

float Circle::getRadius()

{

return radius;

}

Another Example on Access Methods:

// Class Rectangle with an access method.

#include <iostream>

using namespace std;

// Definition of struct LengthWidth begins here

struct LengthWidth

{

float length, width;

};

// Specification part of class Rectangle begins here.

class Rectangle

{

private:

float length, width;

public:

Rectangle(float L, float W); //Prototype for the constructor.

float Area() const;
// To calculate the area

LengthWidth getLengthWidth() const;
// To access the length and width from outside the class

};

// Driver Program

int main()

{

float len, wid;

LengthWidth lw;

cout << "Enter the length followed by the width: ";

cin >> len >> wid;

Rectangle Rec(len,wid);

// Get the area of the rectangle.

cout << "The area is: " << Rec.Area() << endl;

// Now call the access method to get the length and the width of the rectangle

lw = Rec.getLengthWidth();

cout << "The length is: " << lw.length << endl;

cout << "The width is: " << lw.width << endl;

return 0;

}

// Implementation part of class Rectangle

// Definition of function Rectangle of class Rectangle

Rectangle::Rectangle(float L, float W)

{

if (L >= 0)

length = L;

else

length = 0;

if (W >= 0)

width = W;

else

width = 0;
}

// Definition of method Area of class Rectangle

float Rectangle::Area() const

{

return length * width;

}

// Definition of method getLengthWidth of class Rectangle

LengthWidth Rectangle::getLengthWidth() const

{

LengthWidth lw;

lw.length = length;

lw.width = width;

return lw;

}

Class Rectangle with an Access Method and methods to modify the length and the width :

/* Class Rectangle with an access method (to get the length and the width of the rectangle)

and methods to modify the length and the width.*/

#include <iostream>

using namespace std;

// Definition of struct LengthWidth begins here

struct LengthWidth

{

float length, width;

};

// Specification part of class Rectangle begins here.

class Rectangle

{

private:

float length, width;

public:

Rectangle(float L, float W); //Prototype for the constructor.

float Area() const;
// To calculate the area

LengthWidth getLengthWidth() const;
// To access the length and width from outside the class

void setLength(float len);
// To modify the length from outside the class

void setWidth(float len);
// To modify the width from outside the class

};

// Driver Program

int main()

{

float len, wid;

LengthWidth lw;

cout << "\tEnter the length followed by the width: ";

cin >> len >> wid;

Rectangle Rec(len,wid);

// Get the area of the rectangle.

cout << "The area is: " << Rec.Area() << endl;

// Now call the access method to get the length and the width of the rectangle

lw = Rec.getLengthWidth();

cout << "The length is: " << lw.length << endl;

cout << "The width is: " << lw.width << endl;

// Now change the length

cout << "\tEnter the new length: ";

cin >> len;

Rec.setLength(len);

// Claculate the new area

cout << "The area now is: " << Rec.Area() << endl;

// Display the length and the width

lw = Rec.getLengthWidth();

cout << "The length now is: " << lw.length << endl;

cout << "The width is: " << lw.width << endl;

// Now change the width

cout << "\tEnter the new width: ";

cin >> wid;

Rec.setWidth(wid);

// Claculate the new area

cout << "The area now is: " << Rec.Area() << endl;

// Display the length and the width

lw = Rec.getLengthWidth();

cout << "The length is: " << lw.length << endl;

cout << "The width now is: " << lw.width << endl;

cout << "\t";

return 0;

}

// Implementation part of class Rectangle

// Definition of function Rectangle of class Rectangle

Rectangle::Rectangle(float L, float W)

{

if (L >= 0)

length = L;

else

length = 0;

if (W >= 0)

width = W;

else

width = 0;
}

// Definition of method Area of class Rectangle

float Rectangle::Area() const

{

return length * width;

}

// Definition of method getLengthWidth of class Rectangle

LengthWidth Rectangle::getLengthWidth() const

{

LengthWidth lw;

lw.length = length;

lw.width = width;

return lw;

}

// Definition of method setLength of class Rectangle

void Rectangle::setLength(float len)

{

if (len >=0)

length = len;

else

length = 0;
}

// Definition of method setWidth of class Rectangle

void Rectangle::setWidth(float wid)

{

if (wid >= 0)

width = wid;

else

width = 0;
}

1
16

