Trees

A tree is a structure (ADT) with a unique starting node (called the root), in which each node is capable of having a finite number of children (child nodes), and in which a unique directed path exists from the node to any descendant (there are no cycles) of the node. There is a directed arc leaving the parent to the child. Note that every node is the root of a subtree of the tree.

Applications of Trees: used to implement the file system of several operating systems (e.g. Unix and DOS). They are also used to evaluate arithmetic expressions, in Huffman codes, computer-login validation, etc.

Binary Trees

A binary tree is a structure with a unique starting node (called the root), in which each node is capable of having two child nodes, and in which a unique directed path exists from the node to any descendant of the node (there are no cycles). In other words, a binary tree is a tree in which no node can have more than two children. A binary tree is called proper if every node has either two children or no children at all.

Remarks:

1) All elements in the trees we use will be distinct.

2) A node in a binary tree can have no children, one child, or two children.

3) Every node except the root has a unique parent. The root has no parent.

4) Children of a node are written to the left and to the right of the node.

5) The node to the right of a node (if exists) is called its right child.

6) The node to the left of a node (if exists) is called its left child.

7) Each of the root's children is the root of a smaller subtree. The left (resp. right) child is the root of the root's left (resp. right) subtree

8) A node is also called a vertex and children of a node are also called siblings (i.e. siblings are two nodes that are children of the same parent).

9) In an expression tree, the leaves contain operands (constants or variables) and the other nodes contain operators.

10) Some people draw the nodes as circles and others draw them as squares. If a node has, say, no left child, some people draw that as empty circle/square, others draw that as three short lines (every line is longer that the one above it), and some people don't draw anything.

11) Trees can be represented using different data structures.

The root of a binary tree is a node with no parent. This is the top node of the structure (tree).

A leaf is a node with no children. Some people call the leaf an external node. If the node has at least one child, it's called an internal node.

The level of a node is the distance of the node from the root. The root is at level 0. I.e. the level of a node is the number of branches/arcs on the path from the root to the node.

The height of the tree is the maximum level (i.e. it's equal to the number of levels - 1). The height of an empty binary tree is defined to be -1 by some people and 0 by others. The height of the tree is the critical factor in determining the efficiency of insert, delete, and find/retrieve in the tree.

The depth of the tree is equal to the height of the tree.

If there is a path from node n to node m, then n is ancestor of m and m is a descendant of n.

The length of a path is the number of edges on the path.

The depth of a node x is the number of ancestors of x (x is excluded). The depth of the root is 0. Recursively, we can define the depth of x as follows: if x is the root, then its depth is 0; otherwise its depth is 1 + the depth of its parent.

The height of a node x is 0 if x is a leaf and it's equal to 1 + the maximum height of a child of x. Thus, the height of a tree is the height of its root, which is equal to the maximum depth of a leaf.

The maximum number of nodes at level k is 2k.

The maximum number of levels in a binary tree with N nodes is N.

The minimum number of levels in a binary tree with N nodes is m + 1, where m = -1 + (log2(N + 1)(. Note that the levels in this case are 0, 1, 2, ..., m. Here is the proof: Let m be the index of the last level. Now level k holds at most 2k nodes. Thus, we want 

(k=0 m 2k = N. Thus, 2m+1-1 = N, which implies 2m+1 = N + 1. Solve for m to get the result. Note that the number of levels is equal to the index of the last level + 1.

Binary Tree Traversal
· Inorder traversal (LNR): produces an infix expression. 

1) Traverse the left subtree.

2) Visit the node (and process its contents).

3) Traverse the right subtree.

· Preorder traversal (NLR): produces a prefix expression. (Work at the node is performed before (pre) its children are processed.)

1) Visit the node (and process its contents).

2) Traverse the left subtree.

3) Traverse the right subtree.

· Postorder traversal (LRN): produces a postfix expression. (Work at the node is performed after (post) its children are processed.)

1) Traverse the left subtree.

2) Traverse the right subtree.

3) Visit the node (and process its contents).

Tree Traversal (Not Necessarily Binary)

· Inorder traversal (LNR): 

1) Traverse the leftmost subtree.

2) Visit the node (and process its contents).

3) Traverse the remaining subtrees (left to right).

· Preorder traversal (NLR): 
1) Visit the node (and process its contents).

2) Traverse the subtrees (left to right).

· Postorder traversal (LRN): 
1) Traverse the subtrees (left to right).

2) Visit the node (and process its contents).

Binary Search Trees

A binary search tree is a binary tree in which all the nodes with key values smaller than the key value in the root are in the left subtree of the root and all the nodes with key values larger than the key value in the root are in the right subtree.

Note that in a binary search tree, for every node n in the tree, the values of all the keys in the left subtree are smaller than the key value of n and the values of all the keys in the right subtree are larger than the key value of n.

A binary search tree is called a degenerate tree if the elements of the tree were inserted in order from smallest to largest or vice versa. I.e. all subtrees are either left or right subtrees but not a mixture of both. In other words, either every node is to the right of its parent and every node (except the last which is the only leaf) has one child or every node is to the left of its parent and every node (except the last which is the only leaf) has one child. In this case, the tree is actually a sorted linear linked list and the complexities of the tree operations in this case are the same as those of the corresponding sorted linked list.

Why binary search trees?

· Because searching a sorted linked list of length N is O(N), which is costly if N is large. (Binary search of sorted linked lists is not practical because there is no practical way to find the midpoint of the list.)

· A binary search tree is as flexible as a sorted linear linked list, but it has advantages: Any node in a binary search tree can be accessed in O(log2 N), where N is the number of nodes in the tree. E.g., find/retrieve, insert, and delete in a BST are O(log2 N) (average case - balanced tree), while they are O(N) for sorted linear linked list. For array-based sorted linear list, retrieve is O(log2 N), and insert/delete are O(N). In general, insert, delete, and find/retrieve are O(h), where h is the height of the tree. 

Remarks: 

· The average depth/height of a binary tree of N nodes is O((N) and the average depth/height of a search binary tree of N nodes is O(log2N). But, the depth/height can be as large as N-1.

· When we compute the running time (time complexity) of the methods of the binary search tree, we will assume the items are inserted into the tree in a random order to produce a balanced tree.

· We'll denote the binary search tree by BST.

· Because of the recursive nature of a BST, its methods are usually implemented recursively.

· The largest value in a BST is in its rightmost node and the smallest value of a BST is in its leftmost node. Thus, to find the maximum, start at the root and keep moving right until the right child is null, and to find the minimum, start at the root and keep moving left until the left child is null.

Insertion in a Binary Search Tree

In Class

Seaching a Binary Search Tree






In Class

Deletion of Nodes from Binary Search Trees

We have three cases to consider:

1) Deleting a leaf. Set the appropriate link of the node's parent to NULL and then delete the memory allocated for the node. For example, if node y is a right (resp. left) child of node x and y is a leave, and we want to delete y, then we make the right (resp. left) child of x null.

2) Deleting a node with one child. Make the appropriate pointer for the parent skip the node and point to the child instead and then delete the memory allocated for the node. For example, if node y is a right (resp. left) child of node x and z is a right/left child of y and x has no children except y, and we want to delete y, then we make z to be the right (resp. left) child of x. Note that this case (the node to be deleted has one child) and the previous one (the node to be deleted has no children) can be combined in one case.

3) Deleting a node with two children. Here you have two choices. Either you replace the value of the node to be deleted by the largest value in its left subtree (start from the root of its left subtree; i.e. start from the left child of the node to be deleted, and keep moving right until the right child is null) and and then delete the memory allocated for the node that has the largest value in its left subtree (note that this node is either a leaf or has only one child), or you replace the value of the node to be deleted by the smallest value in its right subtree (start from the root of its right subtree; i.e. start from the right child of the node to be deleted, and keep moving left until the left child is null) and then delete the memory allocated for the node that has the smallest value in its right subtree (note that this node is either a leaf or has only one child). In this course, use the first choice.

Implementation of Binary Search Trees (Class TreeType)

· We'll call the binary search tree class TreeType.

· Nodes of the tree are of type TreeNode, where TreeNode is a struct defined as follows:

struct TreeNode

{


ItemType info;


TreeNode *left, // the left child

     *right; // the right child.

}

Remark: For a leaf node, left and right are NULL.

· Our BinarySearchTree class will have only one data member called root and defined as follows:

TreeNode *root;

Remarks:

· Some people include an additional constructor of the form:

TreeType(ItemType item)

In addition to initializing left and right to NULL, this constructor sets info equal to item. The default constructor (the one we will implement) only initializes left and right to NULL.

· We will not keep track of the size (the number of nodes) of the tree. Thus, we will present a different implementation of method lengthIs than that for linked lists.

· As was the case with linked lists, we will not allow repetition in a binary search tree, and we will use templates and exception classes. Also, we will remove the restrictions stated in the textbook on some of the methods.
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