Arrays

Topics: 1-D arrays and 2-D arrays review.

One Dimensional Arrays as Arguments

Example 1:

#include <iostream>

using namespace std;

void F(int B[],int Size);

// You can replace the above statement by:

// void F(int [],int);

int main()

{

int i;

int A[3] = {-4,-5,-6};

cout << "Array before function call:" << endl;

for (i=0; i<=2; i++)

cout << A[i] << " ";

cout << endl;

F(A,3); // Function call. I should pass only name and size.

cout << "Array after function call:" << endl;

for (i=0; i<=2; i++)

cout << A[i] << " ";

cout << endl;

return 0;

}

void F(int B[],int Size)

{

for (int i=0; i <= Size-1; i++)

B[i] = B[i] * B[i];

}

Output:

Array before function call:

-4 -5 -6

Array after function call:

16 25 36

Remarks:

1. If your function has an array parameter and if you put brackets after the name of the array in a function call, you get a syntax error.

2. If you attach the ampersand (&) to the data type of an array parameter, you get a syntax error.

Example 2: What is the output of the following program?

#include <iostream>

using namespace std;

void F1(int&);

void F2(int);

int main()

{

int i;

int A[3] = {-4,-5,-6};

cout << "Array before function call:" << endl;

for (i=0; i<=2; i++)

cout << A[i] << " ";

cout << endl;

F1(A[1]); // Function call. Notice that I'm passing only the second

// element of A not the entire A.

cout << "Array after function call of F1:" << endl;

for (i=0; i<=2; i++)

cout << A[i] << " ";

cout << endl;

F2(A[1]); // Function call. Notice that I'm passing only the second

// element of A not the entire A.

cout << "Array after function call of F2:" << endl;

for (i=0; i<=2; i++)

cout << A[i] << " ";

cout << endl;

return 0;

}

void F1(int &B)

{

B = B * B;

}

void F2(int B)

{

B = 0;

}

Answer:

Array before function call:

-4 -5 -6

Array after function call of F1:

-4 25 -6

Array after function call of F2:

-4 25 -6

Question: What will be the output if we replace the statement

F1(A[1]);

by

int C=A[1]; F1(C);

Answer:

Array before function call:

-4 -5 -6

Array after function call of F1:

-4 -5 -6

Array after function call of F2:

-4 -5 -6

Example 3: Write a function to find the maximum element of an array and to return it. Call the function Array_Max. Assume the array is of type float.

Solution:

float Array_Max(float A[], int Size)

{

float Max=A[0];

for (int i=1; i<= Size - 1; i++)

if (A[i] > Max)

Max = A[i];

return Max;

}

Suppose that you have an array B of size 50 and of type float and suppose you want to find the maximum element of B by calling the above function and suppose also that you want to store the maximum in a variable called M. Then you should call the function as follows:

M = Array_Max(B,50);

Example 4: Write a function to square every element of an array. Call the function Array_Squared. Assume the array is of type float.

Solution:

void Array_Squared(float A[], int Size)

{

for (int i=0; i<= Size - 1; i++)

A[i] = A[i] * A[i];

}

Suppose that you have an array B of size 100 and of type float and suppose you want to square every element of B by calling the above function. Then you should call the function as follows:

Array_Squared(B,100);

Question: How to prevent the elements of the array from changing in the function.

Answer: You proceed the data type of the array parameter by const. This applies to other parameters not necessarily array parameters. It applies even to reference parameters.

Two-Dimensional Arrays as Arguments/Parameters

Remarks:

· In the function prototype and in the function heading, you must include the number of columns within the second brackets. That must be a constant (including a named constant, but it can't be a variable). The number of rows can be omitted.

· In the function call, you don't include brackets at all.

Example:

// Finds the maximum element of array A.

#include <iostream>

using namespace std;

const int Rows = 2, Columns = 3;

int Max(int C[Rows][Columns]);

int main()

{

int M;

int A[][Columns] = {{-5,7,-4},{9,-1,-18}};

M = Max(A);

cout << M << endl;

return 0;

}

int Max(int B[][Columns])

{

int M = B[0][0];

for (int i=0; i < Rows; i++)

for (int j=0; j < Columns; j++)

if (B[i][j] > M)

M = B[i][j];

return M;

}

Output:

9

Remarks:

(1) Arrays are homogeneous (all elements of the array are of the same type).

(2) For C-style arrays (static arrays), the size of the array must be specified in the declaration (the size must be constant and of integral type). The indices of the array must be of an integral type (including char, int, long, short. enum). The indices can be variables, literal constants, named constants, or expressions, and they range (for 1-D arrays) from 0 to the size of the array - 1. For two dimensional arrays, the row (resp. column) index range from 0 to the number of rows (resp. columns) minus 1.

(3) Don’t set an array equal to another (because that does not achieve what you want) and cannot be returned by a return statement.

(4) If A is a 1-D array of type M where M is a data type that requires k bytes and if the memory address of the first element of the array is at position R, then the second element is at position R + k, the third is at position R + 2k, and so on. The memory address of the first element is called the base address (it's also called by some people the address of the array). Thus, we have

Address(Index) = BaseAddress + Index * SizeOfElement
(5) If A is a 2-D, then the array is stored in memory row after row (each row follows the previous one). That's why we need to always to include the exact number of columns of the array in the function prototype/heading.

(6) Arrays are always passed by reference (but the & does not appear in the function prototype or in the function heading as it's the case with other reference parameters). Thus, to present the function from changing the array argument, proceed the array parameter by const). Thus, when a caller calls a function that has an array parameter, the base address of the array is passed to the function.

(7) If A is a parameter to a function, then the first set of brackets can be left empty, but the others cannot be left empty and the exact number of columns (etc) must be put.

1
4

