Exception Handling
We use the throw statement to throw exceptions (complain if an action cannot be done). For example, if a function is called by a client and the function cannot perform the action requested by the client, the function complains and informs the client by throwing an exception of a particular type. For example, if the client wants the function to push an item in a full stack, the function may have a throw statement like

if (isFull()) throw FullStack();

or

if (isFull())

{

FullStack f;

throw f;

}

(Where FullStack is a class called exception class created to handle such circumstances.)

or

if (isFull())

{

string s = ”The stack is full. Insertion failed”;

throw s;

}

Note that if no exception is thrown in such cases, the program may terminate with a run-time error.

If an exception is thrown, it’s supposed to be caught by the client (the program or function that called the function that threw the exception). If the client does not catch the thrown exception, the program will terminate with a run-time error. The client catches the exception by including the call statement to the function that may throw an exception in a try catch bloc. The try catch block has the following syntax:

try

{

Statement(s) that may throw exception(s)

Other statements

}

catch (Exception e)

{

Issue an error message or do something else

}

catch (Exception e)

{

Issue an error message or do something else

}

.

.

.

Remarks:

1) The body of the try statement must be in braces.
2) The body of the catch statement must be in braces.

3) catch (Exception e) above can be replaced by catch (Exception).

4) e in catch (Exception e) can be considered as a parameter. Thus, if Exception is the data type string, then you can print e.

5) A try statement can have many catch statements, but it must have at least one.
6) When a function throws an exception, all statements in the body of the function that follow the throw statement that threw the exception will be skipped and control will pass to the first catch statement in the try catch bloc that resulted in throwing the exception (i.e. all statements in the body of the try statement that follow the call statement to the function are skipped and control passes to the first catch statement). If the exception in the parenthesis of the first catch statement is of the same type as the thrown exception (i.e. if the first catch statement catches the thrown exception), then the body of this catch statement will be executed and all remaining catch statements (if any) of this try catch bloc will be skipped. If the first catch statement does not catch the thrown exception, the body of this catch statement will not be executed and the second catch statement is checked to find out if it catches the thrown exception. If yes, then the body of this catch statement will be executed and the remaining catch statements (if any) will be skipped, and so on. This procedure will continue until a catch statement catches the thrown exception. If there is no catch statement that catches it, the program will be terminated with a run-time error. That’s why you should:
a) Order your catch statements from the more specific to the least specific (i.e. more general should be last).

b) Always have

catch (…)

in your try catch bloc and make this catch statement the last. If you put it

at the beginning, you’ll get an error. This catch statement catches all
exceptions.
PAGE
2

