Exercises on Nullspace and on Functions

Definition: $C^{(n-1)}[a, b]$ is the vector space of all functions f defined on [a, b] such that f and its first n-1 derivatives are continuous on [a, b].

Definition: Let f_1, f_2, \dots, f_n be functions in $C^{(n-1)}[a, b]$. The **Wronskian** of f_1, f_2, \dots, f_n , denoted $W[f_1, f_2, \dots, f_n]$ is the function defined as follows:

$$W[f_1, f_2, \cdots, f_n](x) = \begin{vmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \\ f'_1(x) & f'_2(x) & \cdots & f'_n(x) \\ \vdots & \vdots & \vdots & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \cdots & f_n^{(n-1)}(x) \end{vmatrix}$$

Theorem Let f_1, f_2, \dots, f_n be elements in $C^{(n-1)}[a, b]$. If there exists a point $x_0 \in [a, b]$ such that $W[f_1, f_2, \dots, f_n](x_0) \neq 0$, then f_1, f_2, \dots, f_n are linearly independent.

Remark: If f_1, f_2, \dots, f_n are linearly independent in $C^{(n-1)}[a, b]$, then they are linearly independent in C[a, b].

Exercises:

- (1) Show that e^x and e^{-x} are linearly independent in $C(-\infty,\infty)$.
- (2) Show that x^2 and x|x| are linearly independent in C[-1,1].
- (3) Show that $1, t, t^2, t^3, t^4$ are linearly independent in P_5 .
- (4) Show that the following are linearly independent in C[-1, 1].
 - (a) $\cos(\pi x)$, $\sin(\pi x)$.
 - (b) $x^{3/2}$, $x^{5/2}$.
 - (c) 1, 2cosh(x), 2sinh(x).
 - (d) e^x , e^{-x} , e^{2x} .
- (5) Determine if the following are subspaces of C[-1,1].
 - (a) The set of all functions in C[-1,1] such that f(-1)=f(1).
 - (b) The set of all odd functions on C[-1, 1].
 - (c) The set of continuous nondecreasing functions on C[-1, 1].

- (d) The set of functions in C[-1, 1] such that f(-1) = 0 and f(1) = 0.
- (e) The set of functions in C[-1, 1] such that f(-1) = 0 or f(1) = 0.
- (6) Determine the nullspace of the following matrices

$$(7) \ A = \left[\begin{array}{rrr} 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{array} \right].$$

(8)
$$A = \begin{bmatrix} 1 & 2 & -3 & -1 \\ -2 & -4 & 6 & 3 \end{bmatrix}$$

$$(9) A = \begin{bmatrix} 1 & 3 & -4 \\ 2 & -1 & -1 \\ -1 & -3 & 4 \end{bmatrix}.$$

(6) Determine the nullspace of the (7)
$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix}$$
.
(8) $A = \begin{bmatrix} 1 & 2 & -3 & -1 \\ -2 & -4 & 6 & 3 \end{bmatrix}$.
(9) $A = \begin{bmatrix} 1 & 3 & -4 \\ 2 & -1 & -1 \\ -1 & -3 & 4 \end{bmatrix}$.
(10) $A = \begin{bmatrix} 1 & 1 & -1 & 2 \\ 2 & 2 & -3 & 1 \\ -1 & -1 & 0 & -5 \end{bmatrix}$.
(11) $A = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$.

$$(11) \ A = \left[\begin{array}{cc} 2 & 1 \\ 3 & 2 \end{array} \right].$$