Examples

- (1) Show that $f_1(x) = x^2$ and $f_2(x) = x|x|$ are lineary independent in C[-1,1]. Solution: Note first that |x| is not differentiable at x = 0, and hence, the Wrnoskian method does not apply to any set of functions defined on [-1,1] that include f(x) = |x|, because $|x| \notin C^1[-1,1]$. But, it applies to any set of functions in C[a,b], such that $-1 \notin [a,b]$. But, in our case we don't have to worry about that because the function we have is x|x| not |x|. Multiplying |x| by x removes the sharp corner that |x| has at x = 0, because $x|x| = x^2$ if $x \ge 0$ and $-x^2$ if x < 0. Thus, the derivative of x|x| is 2x if $x \ge 0$ and -2x if x < 0, or equivalently, the derivative of x|x| is 2|x|. Now since $f_1(x)$ and $f_2(x)$ are in $C^1[-1,1]$, we can apply the Wronskian method to check their linear independence. When we do that we get the determinant is zero. But that does not mean the functions are linearly independent; it means we cannot reach any conclusion based on this theorem. Hence, we have to try another method. This is the method we did in class (see your notes).
- (2) Which of the following sets span \mathbb{R}^3 ? If the given set spans \mathbb{R}^3 , write (1,1,1) as a linear combination of the vectors in the set. If the set does not span \mathbb{R}^3 , give an example of a vector in \mathbb{R}^3 that does not belong to the span of the set:

which is

$$\left[\begin{array}{ccccc} 1 & 0 & 2 & 0 & a \\ 0 & 0 & 1 & 1 & b \\ 0 & 1 & 0 & 3 & c \end{array}\right].$$

Now find the row echelon form or the reduced row echelon form (we'll find the row echelon form) of the above matrix, which is

$$\left[\begin{array}{ccccc} 1 & 0 & 2 & 0 & a \\ 0 & 1 & 0 & 3 & c \\ 0 & 0 & 1 & 1 & b \end{array}\right].$$

The resulting system is $c_3 + c_4 = b$, $c_2 + 3c_4 = c$, $c_1 + 2c_3 = a$. Solve to get $c_1 = a - 2c_3$, $c_4 = b - c_3$, $c_2 = c - 3c_4 = c - 3b + 3c_3$, and c_3 is arbitrary. Thus, the system is consistent for any vector v (i.e. for all values of a, b, and c). Therefore, S spans \mathbb{R}^3 .

Thus, we can write (1, 1, 1) as a linear combination of the vectors in S. To do that, just pick a value for c_3 and substitute 1 for a, b, and c. If we take $c_3 = 0$, we get $c_1 = 1$, $c_2 = -2$, $c_4 = 1$. Thus, $(1, 1, 1) = 1v_1 - 2v_2 + 0v_3 + 1v_4 = v_1 - 2v_2 + v_4$. Note that S is lineary dependent (because it has 4 vectors which means it has one vector more than the dimension of \mathbb{R}^3 , and since 3 lin. indep. vectors are enough to span \mathbb{R}^3 , then we can get rid of exactly one vector of S and still get the same span (remember S is linearly dependent implies a vector in S can be written as a linear combination of the remaining vectors in S). By taking $c_3 = 0$, we decided to eliminate v_3 .

(b) $\{v_1 = (1, 2, -1), v_2 = (6, 3, 0), v_3 = (4, -1, 2), v_4 = (2, -5, 4)\}$. Solution: Follow the procedure we did in the previous part. The augmented matrix is

$$\begin{bmatrix} 1 & 6 & 4 & 2 & a \\ 2 & 3 & -1 & -5 & b \\ -1 & 0 & 2 & 4 & c \end{bmatrix}.$$

The row echelon form of the above matrix is

$$\begin{bmatrix} 1 & 6 & 4 & 2 & a \\ 0 & 1 & 1 & 1 & (2a-b)/9 \\ 0 & 0 & 0 & c+a-(2/3)(2a-b) \end{bmatrix}.$$

Note that the above system is inconsistent when $c+a-(2/3)(2a-b) \neq 0$. Thus, any vector v=(a,b,c) such that $c+a-(2/3)(2a-b) \neq 0$ is not in the span of S (which means S does not span \mathbb{R}^3). For example, if we take a=b=0 and c=1, then $c+a-(2/3)(2a-b)=1\neq 0$. Thus, $(0,0,1) \notin \text{span } S$.

- (c) $\{(1, 1, 2), (2, 3, 4)\}$. Solution: No, because we need at least 3 vectors to span \mathbb{R}^3 because $\dim \mathbb{R}^3 = 3$.
- (3) Which of the following sets span P_2 ? If the given set spans P_2 , write $1+t+t^2$ as a linear combination of the vectors in the set. If the set does not span P_2 , give an example of a vector in P_2 that does not belong to the span of the set:
 - (a) $S = \{v_1 = 1, v_2 = t^2, v_3 = 2 + t, v_4 = t + 3t^2\}.$ Solution:

When you write this as a system, you get the same augmented matrix we obtained in the first part of the previous question. Thus, S spans P_2 and $1 + t + t^2 = v_1 - 2v_2 + v_4$.

- (b) $\{v_1 = 1 + 2t t^2, v_2 = 6 + 3t, v_3 = 4 t + 2t^2, v_4 = 2 5t + 4t^2\}$. Solution: When you write this as a system, you get the same augmented matrix we obtained in the second part of the previous question. Thus, S does not span P_2 and t^2 is not in the span of S.
- (c) $\{1 + t + 2t^2, 2 + 3t + 4t^2\}$. Solution: No, because we need at least 3 vectors to span P_2 because dim $P_2 = 3$.
- (4) Determine if each of the following sets is linearly independent in \mathbb{R}^4 . If not, write one of the vectors in S as a linear combination of the other vectors in S. Also, determine if S is a basis for \mathbb{R}^4 . If yes, write (1, 2, 3, 4) as a linear combination of the vectors in S:

- (a) $S = \{v_1 = (1, 1, 2, 1), v_2 = (1, 0, 0, 2), v_3 = (4, 6, 8, 6), v_4 = (0, 3, 2, 1)\}.$
- (b) $S = \{v_1 = (4, 2, -1, 3), v_2 = (6, 5, -5, 1), v_3 = (2, -1, 3, 5)\}.$
- (c) $S = \{v_1 = (1, 1, 1, 1), v_2 = (2, 3, 1, 2), v_3 = (3, 1, 2, 1), v_4 = (2, 2, 1, 1)\}.$
- (5) Determine if each of the following sets is linearly independent in P_3 . If not, write one of the vectors in S as a linear combination of the other vectors in S. Also, determine if S is a basis for P_3 . If yes, write $1 + 2t + 3t^2 + 4t^3$ as a linear combination of the vectors in S:
 - (a) $S = \{v_1 = 1 + t + 2t^2 + t^3, v_2 = 1 + 2t^3, v_3 = 4 + 6t + 8t^2 + 6t^3, 3t + 2t^2 + t^3\}.$
 - (b) $S = \{v_1 = 4 + 2t t^2 + 3t^3, v_2 = 6 + 5t 5t^2 + t^3, v_3 = 2 t + 3t^2 + 5t^3\}.$
 - (c) $S = \{v_1 = 1 + t + t^2 + t^3, v_2 = 2 + 3t + t^2 + 2t^3, v_3 = 3 + t + 2t^2 + t^3, v_4 = 2 + 2t + t^2 + t^3\}.$