Linear Systems of Equations, Inverses, Row Equivalence,

Row Echelon Form, Reduced Row Echelon Form

Definitions: Let A = (a;;) be an n x n matrix:

(1)

(2)

(3)

The minor of element a;; is the determinant of the matrix obtained from A
by deleting row ¢ and column j.

The cofactor of element a;;, denoted A;;, is (—1)**/ multiplied by the minor
of a;;.

The adjoint of A, denoted adj(A) is adj(A) = (4;;) = (Ai)".

Let A and B be n X n matrices:

(1)

(2)

(3)

(4)

(5)

A linear system can have either one solution or no solutions or infinitely
many solutions. If the system has a solution, we say it’s consistent. If the
system has no solution, we say it’s inconsistent.

A homogeneous linear system of equations can have either a unique solution
which is the trivial solution (the zero vector) or infinitely many solutions.
Thus, it’s always consistent.

A linear system of equations can be solved by using elimination or substitu-
tion or Gaussian elimination or Gauss-Jordan elimination. If the coefficient
matrix is square and nonsingular, then the solution can be obtained also by
Gramer’s rule or by multiplying the inverse of the coefficient matrix with the
vector of constant terms.

An upper-triangular system can be solve by backward substitution and a
lower-triangular system can be solved by forward substitution.

To solve a linear system by Gaussian elimination, form the augmented matrix
(by taking the coefficient matrix and following it with the vector of constant
terms) and transform it to row echelon form. Then solve the new system
with backward substitution. If the system is homogeneous, there is no need
to include the vector of constant terms which is the zero vector because the

zero vector will remain zero when elementary row operations are performed.
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(6) To solve a linear system by Gauss-Jordan elimination, form the augmented
matrix (by taking the coefficient matrix and following it with the vector of
constant terms) and transform it to reduced row echelon form. Then solve
the new system.

(7) To solve a linear system for more than one vector of constant terms by using
Gaussian elimination or Gauss-Jordan elimination, put all vectors of constant
terms in the augmented matrix after the coefficient matrix.

(8) To get the determinant of a matrix, several methods can be used including
cofactors, Gaussian elimination, and Gauss-Jordan elimination. When the
latest two methods are used, the following must be kept in mind:

(a) Interchanging two rows multiplies the determinant by -1.

(b) Multiplying a row by a nonzero constant multiplies the determinant by
that number.

(¢) Adding a multiple of a row to another of the forma ry + ar,, — ry
has no effect on the determinant. But, r,, + ary — 7, does change the
determinant (it multiplies the determinant by «).

To use cofactors to find the determinant, the determinant can be ex-

panded along any row or any column; i.e.

det(A) = Zaiinj, 1= 1, e, M.
j=1

det(A) = Zaiinj, j = 1, e, N
=1

(9) To find the inverse of an n X n nonsingular matrix, several methods can be
used. One of those is by using the adjoint and another by using Gauss-Jordan
elimination. Using the adjoint, A™' = m adj(A). To use Gauss-Jordan,
form the matrix M = [A|I,] and perform elementary row operations on M
to get the reduced row echelon form of M. Call the reduced row echelon
form of M N. Then, N = [C|D], where C and D are n x n each. If C' = I,,,
then A=t = D. If C # I, then A is singular. In this case, C' must have at

least one zero row.
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(10) Note that finding the inverse by Gauss-Jordan as described above is equiva-
lent to solving n linear systems of equations. The vectors of constant terms
in this case are e;, ¢ = 1,---,n, where e; is the vector whose i** entry is
1 and the remaining entries are zeros. So, actually the second part of the
augmented matrix, which is I,,, consists of the vectors of constant terms. So,
what we do actually is that we solve the n systems Ax =e¢;, i =1,--- ,n, by
Gauss-Jordan elimination. The solution of Az = e; gives us the first column
of A, the solution of Az = e, gives us the second column of A~!, and so
on.

(11) Row equivalence is an equivalence relation on matrices.

(12) If two matrices are row equivalent, they don’t necessarily have the same
determinant.

(13) If AB is defined, BA is not necessarily defined. Even if BA is also defined,
it is not necessarily equal to AB and it may even have a different size than
AB.

(14) Let A and B be matrices such that the following operations are defined and
let p and g be integers, and o a complex number. Then

(a) If p is positive, then A? = AAP~! = AP~1A and if A is nonsingular, then

A7P = (AP)7L

(b) (47)7 = (A7)

() (AB)T = BT AT.

(d) (AT =4

(¢) (A+ B)T = AT 4 BT

(f) (@A)T = aAT

(g) If A is nonsingular, then (A71)7! = A, (AT)"! = (A™Y)T, and (4P)~! =
(an)

(h) If A is nonsingular and o # 0, then a4 is nonsingular and (aA)™' =
LA~ In particular, (—A)™" = —(47).

(i) If A and B are nonsingular, then so is AB and (AB)™' = B~'A~%.

(j) Assume A, B, and A + B are invertible. In general, (A + B)™! #
A'+B
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(15) In general matrices and vectors do not satisfy the zero factor property. ILe.
you can find vectors a and b such that their dot/inner product is zero but
none of them is the zero vector, and you can find two matrices A and B such
that AB is the zero matrix but none of them is the zero matrix. Moreover,
if A2 = A, that does not necessarily imply A = I or A = 0. But if 4 is
nonsingular, then A2 = A iff A =1.

(16) A can be written as a sum of a symmetric matrix which is (4 + A”) and a
skew-symmetric matrix which is (A — AT).

(17) The following are equivalent:

(a) det(A) # 0.
(



