Facts about Hermitian, Unitary, Skew-herimitian, and Normal Matrices, and Others

- (1) Every matrix M can be expressed as the sum of a Hermitian matrix and a skew-Hermitian matrix. I.e., we can write $M = \frac{1}{2}(M + M^H) + \frac{1}{2}(M M^H)$.
- (2) A skew-Herimitain matrix is also called antiHermitian.
- (3) A real matrix is skew-Hermitian iff it's skew-symmetric.
- (4) The real part of every element of the main diagonal of a skew-Hermitian matrix has a zero real part.
- (5) Every skew-Hermitian matrix is normal.
- (6) A+Bi (A and B are real matrices) is skew-Hermitian iff A is skew-symmetric and B is symmetric.
- (7) A real matrix is Hermitian iff it's symmetric.
- (8) The main diagonal of a Hermitian matrix is real.
- (9) The eigenvalues of a Hermitian matrix are real (but the eigenvectors can be complex).
- (10) Eigenvectors of a Hermitian matrix that correspond to different eigenvalues are orthogonal.
- (11) Every Hermitian matrix is normal.
- (12) A + Bi (A and B are real matrices) is Hermitian iff A is symmetric and B is skew-symmetric.
- (13) Every unitary matrix is normal.
- (14) If M is unitary, then $||Mx||_2 = ||x||_2$, $\forall x \in \mathbb{C}^n$.
- (15) If λ is an eigenvalue of a unitary matrix, then $|\lambda| = 1$.
- (16) The columns of a unitary matrix are pairwise orthogonal and the two-norm of each column is 1.
- (17) An $n \times n$ matrix is normal iff it has n orthogonal eigenvectors.