Real Vector Spaces and Supspaces

Definition: A real vector space is a set V of elements (called vectors) together with two operations \oplus (called vector addition) and \odot (called scalar multiplication) satisfying the following 10 properties (axioms):

- (α) If u and v are elements of V, then $u \oplus v$ is in V.
 - (a) $u \oplus v = v \oplus u$, for all u and v in V.
 - (b) $u \oplus (v \oplus w) = (u \oplus v) \oplus w$, for all u, v, and w in V.
 - (c) There is an element 0 in V such that $u \oplus 0 = 0 \oplus u = u$, for all u in V.
 - (d) For each u in V, there is an element -u in V such that $u \oplus -u = 0$.
- (β) If u is an element of V and $c \in \mathbb{R}$, then $c \odot u$ is in V.
 - (e) $c \odot (u \oplus v) = c \odot u \oplus c \odot v$, for all $c \in \mathbb{R}$ and all u and v in V.
 - (f) $(c+d) \odot u = c \odot u \oplus d \odot u$, for all c and d in \mathbb{R} and all u in V.
 - (g) $c \odot (d \odot u) = (cd) \odot u$, for all c and d in \mathbb{R} and all u in V.
 - (h) $1 \odot u = u$, for all u in V.

Remarks:

- (1) If u is a vector in a vector space, then u is written as \mathbf{u} or \vec{u} .
- (2) If the real numbers (called scalars) in the axioms above are complex, the vector space in that case is called a complex vector space.
- (3) The vector $-\mathbf{u}$ is called the negative of \mathbf{u} and the vector $\mathbf{0}$ is called the zero vector.
- (4) -**u** and **0** are unique.
- (5) We will write sometimes $u \oplus v$ as u + v and $c \odot u$ as cu.
- (6) Vectors of \mathbb{R}^n are sometimes written as column vectors and sometimes as (x_1, x_2, \dots, x_n) .

Theorem: Let V be a vector space

- (1) $0 \odot u = 0$, for every u in V.
- (2) $c \odot 0 = 0$, for every real number c.

- (3) If $c \odot u = 0$, then either c = 0 or u = 0 (c here is a real number and $u \in V$).
- (4) $(-1) \odot u = -u$, for all $u \in V$.

Examples of Vector Spaces:

- (1) \mathbb{R} with addition of real numbers and multiplication of real numbers.
- (2) \mathbb{R}^n , $\forall n \in \mathbb{Z}^+$ with addition of vectors and scalar multiplication.
- (3) M_{mn} : The set of all $m \times n$ matrices with matrix addition and scalar multiplication.
- (4) F[a, b]: The set of all real-valued functions defined on [a, b], where \oplus and \odot are defined as follows: $(f \oplus g)(t) = f(t) + g(t)$, $(c \odot f)(t) = cf(t)$.
- (5) $F(-\infty,\infty)$: The set of all real-valued functions defined on $(-\infty,\infty)$.
- (6) C[a, b]: The set of all continuous real-valued functions defined on [a, b], where \oplus and \odot are defined as follows: $(f \oplus g)(t) = f(t) + g(t)$, $(c \odot f)(t) = cf(t)$.
- (7) $C(-\infty,\infty)$: The set of all continuous real-valued functions defined on $(-\infty,\infty)$.
- (8) P_n : The set of all polynomials of degree $\leq n$ (that includes the zero polynomial), where \oplus and \odot are defined as follows: For $p(t) = a_0 + a_1t + a_2t^2 + \cdots + a_nt^n$ and $q(t) = b_0 + b_1t + b_2t^2 + \cdots + b_nt^n$ in P_n and $c \in \mathbb{R}$, $p(t) \oplus q(t) = (a_0 + b_0) + (a_1 + b_1)t + (a_2 + b_2)t^2 + \cdots + (a_n + b_n)t^n$, and $c \odot p(t) = ca_0 + ca_1t + ca_2t^2 + \cdots + ca_nt^n$.
- (9) P: The set of all polynomials (that includes the zero polynomial).

Remark: We'll be dealing only with real vector spaces (although the field \mathbb{R} can be replaced by any field such as the field \mathbb{C} of complex numbers). Thus, we'll assume all vector spaces below are real vector spaces (i.e. they are vector spaces over \mathbb{R}).

Definition: Let V be a vector space and let W be a nonempty subset of V. If W is a vector space with respect to the operations in V, then W is called a subspace of V.

Definition: Let V be a vector space and let W be a nonempty subset of V. Then W is a subspace of V if and only if

(α) For every u and v in W, $u \oplus v$ is in W.

 (β) For every u in W and every real number $c, c \odot u$ is in W.

Remarks:

- (1) (α) and (β) in the definition above can be replaced by For every u and v in W, and every c and d in \mathbb{R} , $c \odot u \oplus d \odot v$ is in W.
- (2) If the word "nonempty" in the previous example is deleted, then we should add the following item to (α) and (β) above:
 - (γ) $0 \in W$.
- (3) If V is a vector space, then V and $\{0\}$ are subspaces of V. $\{0\}$ is called the zero subspace.
- (4) Every vector space must contain the zero vector.
- (5) If a subset W of a vector space V does not contain the zero vector, then W is not a subspace of V. But, if a subset W of a vector space does contain the zero vector that does not necessarily means W is a subspace of V.
- (6) Let A be an $m \times n$ matrix and let W be the set of all solutions to Ax = 0. Then, W is a subspace of \mathbb{R}^n and it's called the *nullspace* of A or the *solution* space of the system Ax = 0.
- (7) P_n is a subspace of P_{n+1} and P_n is a subspace of P.
- (8) To check if a subset W of a vector space V is a subspace of V, you need first to check that W is nonempty. If W is nonempty, then check closure (with respect to W) of \odot and \oplus . If W is not closed under \odot or under \oplus , then it is not a subspace.

Definition: Let v_1, v_2, \ldots, v_k be vectors in a vector space V. A vector v in V is called a *linear combination* of v_1, v_2, \ldots, v_k if there exist real numbers c_1, c_2, \cdots, c_n , such that

$$v = c_1 v_1 + c_2 v_2 + \dots + c_k v_k.$$

Remark: To check if a vector v is a linear combination of v_1, v_2, \dots, v_k , check if the linear system $c_1v_1 + c_2v_2 + \dots + c_kv_k = v$ has a solution (note that the unkwons here are c_1, c_2, \dots, c_k). If yes, then v is a linear combination of the given vectors. If not, then not.

Definition: Let $S = \{v_1, v_2, \dots, v_k\}$ be a set of vectors in a vector space V. Then the set of all vectors in V that are linear combinations of the vectors in S is called span S or span $\{v_1, v_2, \dots, v_k\}$.

Theorem: Let $S = \{v_1, v_2, \dots, v_k\}$ be a set of vectors in a vector space V. Then span S is a subspace of V.

Exercises:

- (1) Determine whether the following sets V are closed under \oplus and \odot
 - (a) V is the set of all ordered pairs of real numbers (x, y), where x > 0 and y > 0; $(x, y) \oplus (u, v) = (x + u, y + v)$, $c \odot (x, y) = (cx, cy)$.
 - (b) V is the set of all ordered triples of real numbers of the form (0, x, y); $(0, x, y) \oplus (0, u, v) = (0, x + u, y + v), c \odot (0, x, y) = (0, 0, cz).$
 - (c) V is the set of all polynomials of the form $at^2 + bt + c$, where a, b, and c, are real numbers with b = a + 1; $(a_1t^2 + b_1t + c_1) \oplus (a_2t^2 + b_2t + c_2) = (a_1 + a_2)t^2 + (b_1 + b_2)t + (c_1 + c_2)$, $r \odot (at^2 + bt + c) = rat^2 + rbt + rc$.
- (2) Determine whether the given set V with the given oparations is a vector space:
 - (a) V is the set of all ordered pairs of real numbers (x, y); $(x, y) \oplus (u, v) = (x + u, y + v)$, $c \odot (x, y) = (0, 0)$.
 - (b) V is the set of all real numbers; $u \oplus v = 2u v$, $c \odot u = cu$.
 - (c) V is the set of all positive real numbers; $u \oplus v = uv$, $c \odot u = u^c$.
- (3) Show that if $u \neq 0$ and $a \odot u = b \odot u$, then a = b.
- (4) Which of the following subsets of \mathbb{R}^3 are subspaces of \mathbb{R}^3 ? The set W of all vectors of the form
 - (a) (a, b, c), where a = c = 0.
 - (b) (a, b, c), where a = -c.
 - (c) (a, b, c), where b = 2a + 1.
- (5) Which of the following subsets of \mathbb{R}^2 are subspaces of \mathbb{R}^2 ? The set W of all vectors of the form
 - (a) The union of the first and the third quadrant.
 - (b) The set of all points in the unit disk (on and inside the unit circle).

- (6) Which of the following subsets of P_2 are subspaces of P_2 ? The set W of all polynomials of the form
 - (a) $a_0 + a_1 t + a_2 t^2$, where $a_0 = a_1 = 0$.
 - (b) $a_0 + a_1 t + a_2 t^2$, where $a_1 = 2a_0$.
 - (c) $a_0 + a_1t + a_2t^2$, where $a_0 + a_1 + a_2 = 2$.
 - (d) $a + t^2$.
 - (e) $a_0 + a_1t + a_2t^2$, where a_0 , a_1 , a_2 are integers.
 - (f) $p(t) = a_0 + a_1 t + a_2 t^2$, where p(0) = 0.
- (7) Which of the following subsets of M_{23} are subspaces of M_{23} ? The set W of all matrices of the form

- (8) Which of the following subsets of M_{nn} are subspaces of M_{nn} ?
 - (a) The set of all $n \times n$ symmetric matrices.
 - (b) The set of all $n \times n$ nonsingular matrices.
 - (c) The set of all $n \times n$ diagonal matrices.
 - (d) The set of all $n \times n$ singular matrices.
 - (e) The set of all $n \times n$ upper triangular matrices.
 - (f) The set of all $n \times n$ matrices whose determinant is 1.
- (9) Which of the following subsets are subspaces of $C(-\infty, \infty)$
 - (a) All nonnegative functions.
 - (b) All constant functions.
 - (c) All functions f such that f(0) = 0.
 - (d) All functions f such that f(0) = 5.
 - (e) All differentiable functions.

(10) Let
$$S = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$
. Determine if $u = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ belongs to span S .

- (11) Let $S = \left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \\ 6 \end{bmatrix} \right\}$. Determine if $u = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$ belongs to span S (i.e. if it's a linear combination of the vectors of S). How many vectors are in span S?
- (12) Let W be the set of all vectors of the form $\begin{bmatrix} s \\ 3s \\ 2s \end{bmatrix}$. Show that W is a subspace of \mathbb{R}^3 by finding a vector v in \mathbb{R}^3 such that $W = \text{span}\{v\}$.
- (13) Let W be the set of all vectors of the form $\begin{bmatrix} 5a+2b \\ a \\ b \end{bmatrix}$. Show that W is a subspace of \mathbb{R}^3 by finding vectors u and v in \mathbb{R}^3 such that $W = \text{span}\{u, v\}$.
- (14) Let W be the set of all vectors of the form shown (a, b, and c are arbitrary real numbers). Find a set of vectors S that span W

(a)
$$\begin{bmatrix} 3a+b \\ 4 \\ a-5b \end{bmatrix}$$
.
(b)
$$\begin{bmatrix} a-b \\ b-c \\ c-a \\ b \end{bmatrix}$$
.