Operations on Sets

Definition: A set is a collection of distinct unordered objects.

Note: The empty set is the set with no elements. The empty set is denoted by ϕ .

Definition: Let A, B, and C be subsets of a universal set U. Then

- 1. We say $A \subseteq B$ (pronounced A is a subset of B) if every element of A is an element of B.
- 2. We say $A \subset B$ (pronounced A is a proper subset of B) if every element of A is an element of B, but B has more elements than A.
- 3. We say A = B (pronounced A is equal to B) if A and B have the same elements. Notice that A = B iff $A \subseteq B$ and $B \subseteq A$.
- 4. $A \cup B$ (pronounced A union B) is the set of elements that are either in A or in B.
- 5. $A \cap B$ (pronounced A intersection B) is the set of elements that are in both A and B (i.e. elements common to A and B).
- 6. A B (pronounced A minus B) is the set of elements that are in A but not in B. Notice that $A B = A (A \cap B)$. Sometimes A B is written as $A \setminus B$.
- 7. $A \oplus B$ (called the *symmetric difference* of A and B) is the set of elements that are in A but not in B and the elements that are in B but not in A. Notice that $A \oplus B = (A B) \cup (B A) = (A \cup B) (A \cap B)$.
- 8. \overline{A} (pronounced the complement of A) is the set of elements that are in U but not in A. Notice that $\overline{A} = U A$. Sometimes \overline{A} is written as A^c .
- 9. $A \times B$ (the cross product of A and B) is the set $\{(a, b) \mid a \in A, b \in B\}$. Be careful $A \times B$ is not necessarily equal to $B \times A$.
- 10. $A \times B \times C$ (the cross product of A, B, and C) is the set $\{(a, b, c) \mid a \in A, b \in B, c \in C\}$.
- 11. $\mathcal{P}(A)$ (called the *power set* of A) is the set of all subsets of A. Notice that ϕ is a subset of any set.

Facts About Sets

Let A, B, and C be subsets of a universal set U. Then

- 1. $A \subseteq A, A = A, A \cup A = A, A \cap A = A, A A = \phi$.
- 2. $\overline{\overline{A}} = A$.
- 3. $A \cup \overline{A} = U$, $A \cap \overline{A} = \phi$.
- 4. $A \cap U = A, A \cup U = U.$
- 5. $\operatorname{not}(x \in A)$ is equivalent to $x \notin A$ is equivalent to $x \in \overline{A}$.
- 6. $\overline{\phi} = U$, $\overline{U} = \phi$.
- 7. $A B = A \cap \overline{B}$.
- 8. $\overline{A \cap B} = \overline{A} \cup \overline{B}, \ \overline{A \cup B} = \overline{A} \cap \overline{B}.$
- 9. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C), A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
- 10. $A \cap (B \cap C) = (A \cap B) \cap C$, $A \cup (B \cup C) = (A \cup B) \cup C$.
- 11. $A \cup B = B \cup A$, $A \cap B = B \cap A$.
- 12. $A \cap B \subseteq A$, $A \cap B \subseteq B$, $A \subseteq A \cup B$, $B \subseteq A \cup B$.
- 13. $A \cup \phi = A, A \cap \phi = \phi, \phi \subseteq A.$

Remark: $A \times A$ is usually written as A^2 . Similarly, $A \times A \times A$ is written as A^3 , and so on.

Questions

- 1. Decide whether the following are true or false. Explain your answers.
 - (a) If $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$.
 - (b) If a and b are irrational numbers, then a^b is irrational.
 - (c) If a and b are irrational numbers and $|a| \neq |b|$, then a + b is irrational.
 - (d) If n is an odd integer, then $n^2 4n 3$ is an even integer.
 - (e) $\phi \in \{2, 3\}.$

- (f) $\phi \subseteq \{2, 3\}$.
- (g) $\{2\} \in \{2, 3\}$.
- (h) $\{2\} \subseteq \{2,3\}$.
- (i) $\phi \in \{\phi, 2, 3\}$.
- (j) $\phi \subseteq \{\phi, 2, 3\}.$
- $(k) \ \{2\} \in \{\{2\},2,3\}.$
- (l) $\{2\} \subseteq \{\{2\}, 2, 3\}.$
- 2. Let $A = (-2, 4] \cup [6, 10), B = [-5, 1) \cup (8, 12), C = (3, 5] \cup \{7\}, D = [-1, 1].$ Find $A \cap B, A \cup B, A - B, A \oplus B, B - A$. Then describe $C \times C$ and $D \times D$.
- 3. $1 + 3\mathbb{Z}^+ \subset 1 + 6\mathbb{Z}^+$.