Questions about Permutations, Combinations, and Derangements

- 1. Evaluate $\sum_{k=0}^{n} (-1)^k C(n,k) 3^{n-k}$.
- 2. Use the Binomial Theorem to simplify 1.01^3 .
- 3. Prove each of the following with no more than one line
 - $\sum_{k=0}^{n} \frac{1}{k+1} 2^{k+1} C(n,k) = \frac{3^{n+1}}{n+1}$. Solution: Consider $(x+1)^n = \sum_{k=0}^n C(n,k) x^k$. Now take the integral of this equation with respect to x and then substitute in the result x=2.
 - $\sum_{k=1}^{n} kC(n,k) = n2^{n-1}$. You have to use here a method different than that we used in class. Remember this was solved in class but by a different method.

Solution: Consider $(x+1)^n = \sum_{k=0}^n C(n,k)x^k$. Now take the derivative of this equation with respect to x and then substitute in the result x=1.

4. With no more than one line, evaluate $\sum_{k=1}^{n} k^2 C(n, k)$.

Solution: Consider $(x+1)^n = \sum_{k=0}^n C(n,k)x^k$. Now take the derivative of this equation with respect to x twice and then substitute in the result x=1.

5. You are given 33 points in the cartesian plane. No 3 of them are collinear. How many triangles can you make of these points if the vertices of each triangle have to be from the given points.

```
Solution: C(33,3).
```

6. 23 persons are to sit around a circular table. This group of people includes A and B who don't like each other and don't want to sit next to each other. In how many ways can the 23 persons sit.

```
Solution: (20)(21!). (Get it from 22!-(2!. 21!))
```

- 7. Prove that $D_n = (-1)^n + nD_{n-1}$.
- 8. Use the above (what you've just proved) to prove in no more than two lines that D_n is even if n is an odd positive integer and odd if n is an even positive integer.