CSIT 241 Fall 2002

Exercises on Functions and Relations

Question 1: Consider the poset (A, \subseteq) , where $A = \{\{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 4\}\}$.

- (a) Find all maximum, minimum, maximal, and minimal elements of A.
- (b) Draw the Hasse Diagram of A.

Question 2:

- (a) Prove that the function $f: (\mathbb{N} \cup \{0\}) \times (\mathbb{N} \cup \{0\}) \longrightarrow \mathbb{N} \cup \{0\}$, defined by $f(k,n) = 2^k(2n+1) 1$ is one-to-one.
- (b) Prove that the function $f: (\mathbb{N} \cup \{0\}) \times (\mathbb{N} \cup \{0\}) \longrightarrow \mathbb{N} \cup \{0\}$, defined by $f(k,n) = 2^k(2n+1) 1$ is onto. (You have to be very careful here.)

Notice that parts (a) and (b) prove that \mathbb{N} has the same cardinality as $\mathbb{N} \times \mathbb{N}$, because the function f defined above is bijective (i.e. one-to-one and onto.)

(c) Use (a) and (b) to prove that if A and B are countably infinite sets, then so is $A \times B$.

Question 3:

- (a) Prove that if A and B are both countably infinite disjoint sets, then so is $A \cup B$. Hint: Consider the function $f: \mathbb{N} \longrightarrow A \cup B$, which maps even natural numbers to A and odd natural numbers to B. All you need to do is to give a mathematical formula for f).
- (b) Prove that the intervals (0,3) and $(3,\infty)$ have the same cardinality. Hint: First show that (0,3) and (0,1) have the same cardinality by finding a one-to-one and onto function between them. Then show that $(3,\infty)$ has the same cardinality as \mathbb{R} by finding a one-to-one and onto function between them. Finally, depend on the fact that

- (0,1) and \mathbb{R} have the same cardinality. When you come up with the two functions mentioned above, you'll have the following:
- (0,3) has the same cardinality as (0,1), (0,1) has the same cardinality as \mathbb{R} , \mathbb{R} has the same cardinality as $(3,\infty)$.
- (c) Prove that the set of irrational numbers (i.e. $\mathbb{R} \setminus \mathbb{Q}$) is uncountable.

Notice that (c) implies that the cardinality of the set of irrational numbers is greater than the cardinality of the set of rational numbers.

Hints: Remember

- 1. If $f: A \longrightarrow B$ is a bijective function, then $f^{-1}: B \longrightarrow A$ is defined and it is also bijective.
- 2. If $f:A\longrightarrow B$ and $g:B\longrightarrow C$ are bijective functions, then $g\circ f:A\longrightarrow C$ is also bijective.

Question 4:

- (1) Find a bijective function from $\mathbb{N} \times \mathbb{N}$ onto \mathbb{Z} .
- (2) Find a bijective function from (-1, 1) onto $(\frac{9999}{777}, \infty)$.
- (3) Give a mathematical formula for a bijective function from \mathbb{Z} onto \mathbb{N} .
- (4) Find a bijective function from $\mathbb{N} \setminus \{1, 2, 3\}$ onto $(2\mathbb{N} 1) \cup \{a, b, c\}$, where a, b, and c, are the letters a, b, c (This means $\mathbb{N} \cap \{a, b, c\} = \phi$.)