Binomial Theorem

Notation:

Let n and r be nonnegative integers and assume $r \leq n$. We will use C(n,r) to denote the quantity $\frac{n!}{r!(n-r)!}$.

Note: 0! = 1 by definition.

EXAMPLE 1. Let n and r be natural numbers such that $r \leq n$. It is easy to prove (using the definition) that:

- C(n,n) = C(n,0) = 1.
- C(n,1) = C(n,n-1) = n.
- C(n,r) = C(n,n-r).

Theorem 2. Let a and b be real numbers and let $n \in \mathbb{N}$. Then

$$(a+b)^n = \sum_{k=0}^n C(n,k)a^{n-k}b^k.$$

Remarks:

- The above expansion has n+1 terms.
- $(a+b)^n = \sum_{k=0}^n C(n,k)a^k b^{n-k}$.

EXAMPLE 3. Prove that if r is a nonnegative integer and $n \in \mathbb{N}$, then

$$r^n = \sum_{k=0}^n C(n,k)(r-1)^k$$
.

Solution: Done in class.

Example 4. Prove that $\sum_{k=0}^{n} C(n,k) = 2^{n}, \forall n \in \mathbb{N}.$

Solution:

A direction application of the previous example.

Example 5. Prove that $\sum_{k=0}^{n} C(n,k)(-1)^k = 0, \forall n \in \mathbb{N}$.

Solution:

A direction application of example 3.

EXAMPLE 6. Prove that $\sum_{k=0}^{n} C(n,k)(2)^k = 3^n, \forall n \in \mathbb{N}$.

Solution:

A direction application of example 3.

Example 7. Prove that
$$\sum_{k=0}^{n/2} C(n, 2k) = \sum_{k=1}^{n/2} C(n, 2k-1) = 2^{n-1}, \forall n \in \mathbb{N}.$$

Solution:

From example 4, we have

$$2^{n} = \sum_{k=0}^{n} C(n,k) = \sum_{k=0}^{n/2} C(n,2k) + \sum_{k=1}^{n/2} C(n,2k-1).$$

Thus,

(0.1)
$$\sum_{k=0}^{n/2} C(n,2k) + \sum_{k=1}^{n/2} C(n,2k-1) = 2^n.$$

But, from example 5, we have

$$\sum_{k=0}^{n/2} C(n, 2k) - \sum_{k=1}^{n/2} C(n, 2k - 1) = 0.$$

Hence,

$$\sum_{k=0}^{n/2} C(n, 2k) = \sum_{k=1}^{n/2} C(n, 2k - 1).$$

Thus, equation 0.1, becomes

$$\sum_{k=0}^{n/2} C(n,2k) + \sum_{k=0}^{n/2} C(n,2k) = 2^{n}.$$

Therefore,

$$2\sum_{k=0}^{n/2} C(n,2k) = 2^n.$$

The result now follows.

EXAMPLE 8. Find the coefficients of x^{11} and x^{13} in the binomial expansion of $(\frac{x^4-2}{x})^{17}$. Also, find the two middle terms.

Solution: In class.

EXAMPLE 9. Find the coefficient of $x^{11}y^6$ in the binomial expansion of $(2x - y)^{17}$. Also, find the two middle terms.

Solution: In class.

EXAMPLE 10. Find the coefficient of x^{18} in the binomial expansion of $(2x - y)^{18}$. Also, find the middle term.

Solution: In class.