Reading and Writing to Files
(1) Many functions in PHP are overloaded and take more/less arguments than we use.

(2) When u use backslashes in the path of the file (for windows), you need to write two backslashes instead of one.

(3) Relative paths better than absolute.

(4) Avoid world writable files and directories.

(5) Do not have world writable files and directories in your public directory.

(6) You can include html/ftp addresses for files instead of path.

(7) Domain names are case insensitive, but the path and the file name may be case sensitive.

Reading Files

To read a file, you need to do the following:

1) Open the file using fopen which has many modes including:

(a) r: open the file for reading starting from the beginning of the file.

(b) r+: open the file for reading starting from the beginning of the file.

(c) w: open the file for writing starting from the beginning of the file. If the file already exists, its contents will be removed, and if it does not exist, it will try to create it.
(d) w+: open the file for reading and writing starting from the beginning of the file. If the file already exists, its contents will be removed, and if it does not exist, it will try to create it.

(e) x: open the file for writing starting from the beginning of the file. If the file already exists, it will not be opened and a warning will be printed, and if it does not exist, it will try to create it.

(f) x+: open the file for reading and writing starting from the beginning of the file. If the file already exists, it will not be opened and a warning will be printed, and if it does not exist, it will try to create it.

(g) a: open the file for appending (writing) starting from the end of the file. If the file does not exist, it will try to create it.

(h) a+: open the file for reading and appending (writing) starting from the end of the file. If the file does not exist, it will try to create it.

(i) b (for binary): used with the above modes if the system differentiates between binary and text files. Windows does, Unix does not.

(j) t (for text): used with the above modes if the system differentiates between binary and text files. Windows does, Unix does not.

Examples:
$f = fopen('/home/abu-jeib/temp/abb.txt', 'r');
$f = fopen('/home/abu-jeib/temp/abb.txt', 'rb');

@ $f = fopen('/home/abu-jeib/temp/abb.txt', 'rb');
In the last one, @ is sued to suppress the errors generated by PHP. Use can use any other identifier instead of f.

2) Check if the file was opened successfully. If not, generate an error message and exit. Here is an example:
if (!$f)

{

echo "ERROR: file can't be opened.<P></body></html>\n";

exit;

}

On the other hand, if the file was opened successfully, do what you want to do, and in the end close the file as follows:
fclose($f);
3) You can read the file in several ways:
(a) Read all contents of the file at once and display them (but here you have to be careful because when the contests are displayed in a homepage, all lines will be displayed next to each other with no separation between the lines. This is done using the function readfile.
Syntax:

readfile(file_name);

Here is an example:

readfile('/home/abu-jeib/temp/abc.txt')
(b) Read one line at a time (the new line character will be consumed and will be part of the string you read). Here you use the function fgets.
Syntax:

$s = fgets($file,max_bytes_plus_1);

Here is an example:

$s = fgets($f,10000);
The above statement means read one line from the file and assign it to string s. It reads until it encounters a newline character, the end

of file, or until it reads 10000 bytes from the file. Of course, the number 10000 can be replaced by the number of bytes you want to read (e.g. you may want to make that equal to the file size which you can get using the function file size; e.g. $k = filesize('/home/abu-jeib/temp/abc.txt')) and the identifier s can be replaced by any other identifier you want. You my drop the second argument when you call the function. The second argument for function fgets is optional.
(c) The same as the above part, but remove PHP and HTML tags from the file unless you want to keep some of them. Here you use the function fgetss.

Syntax:

$s = fgetss($file,max_bytes_plus_1,permitted_tags);

Here is an example:

$s = fgetss($f,10000,"<P>
");

In this case, all PHP and HTML tags will be removed except <P> and
 (it doesn’t matter whether they are specified to be lowercase or uppercase in the delimiter section of the function call or in the file to be read). The second and third arguments for function fgetss are optional.
(d) Reading the file character by character. Here you use the function fgetc. This function reads all characters including whitespace characters.

Syntax:

$s = fgetc($f);
Here be careful when you compare with whitespace characters such as “\n”. E.g. don’t write

if ($s == ‘\n’)

Instead write

if ($s == "\n")

Remember that single quotes don’t recognize whitespace characters such as the newline character.

(e) Read one line at a time but break it into pieces according to a specified character such as the comma or the tab character “\t”. The pieces will be assigned to an array. Here you use the function fgetcsv.

Syntax:
$s = fgetcsv($f, max_bytes_plus_1,string_delimiter);
Here are examples:

$s = fgetcsv($f,10000,',');
$s = fgetcsv($f,10000,”\t”);
Note that I used double quotes for the tab character \t.

All but the first argument of this function are optional.

Since you are involving arrays here, it’s better to have a priming read before the while loop that reads the file to avoid warnings.

(f) Read a certain number of bytes without paying attention to the newline character. Here is the syntax:

$s = fread($f,number_of_bytes_to_read);

E.g. to read all the file and put it in $s:

$s = fread($f,filesize($file_to_upload));

4) To go through the contents of the file, you need a loop such as the following:
while (!feof($f))

{

…

}

Writing to Files
 To write to files, you need first to make sure that the directory you want to write to has public writing permissions, but never have public writing permissions for public directories/files, and avoid as much as possible having directories/files with public writing permissions. Giving a directory/file public writing permissions is a security risk.

To write to files, you need the following steps:

1) Same as step 1 for reading files.

2) Same as step 2 for reading files, but see the modes for writing listed in that step. The differences between those modes were mentioned in class.

3) To write to files, you use the syntax:

fwrite($f,$s);

where $s is the string to write.
PAGE
4

