Handout 9 (The if Statement)

Question: What are control structures and what is the if statement?

Answer: Usually the order in which statements are executed in a program or a function (this order is called flow of control) is sequential (i.e. when a statement is finished executing, control passes to the next statement). Thus, the default flow of control in a program or a function is sequential. But, sometimes we may not be able to do what we want with a sequential flow of control. So, we need mechanisms to force the program or function to execute some statements in a non-sequential order. For example, we may want to execute a statement or a group of statements only if a certain condition applies, we may want to repeat executing a statement or a group of statements a specific number of times, we may want to repeat executing a statement or a group of statements until a certain condition is met, etc.

To make the flow of control non-sequential, use control structures (branching mechanisms). So, control structures are statements that transfer control to a statement which may be different than the next.

The if statement is one of those control structures. The if statement is used to select from several alternatives of executable statements or to execute a statement or a group of statements only if a certain condition is met. There are several forms of the if statement. In one of them the if statement is a branching mechanism that lets the program choose between two alternative actions, choosing one or another depending on the truth value of the expression in parentheses in the if statement. This form is called the if-then-else form. There is another form of the if statement. In that form, an action is performed if the expression in parentheses evaluates to true. If that action is false, then no action is performed. This form is called the if-then from.

1) The if-then-else form: This form is used if you have a situation like: if a certain condition is true then perform action1; otherwise perform action2. The if-then-else statemnet tests a particular condition (the expression in parentheses after the word if). If the condition (expression) evaluates to true or a nonzero value, then execute the first alternative. If it evaluates to false or zero, then execute the second alternative.
Syntax:

if (Expression)

Statement1

else

Statement2

The above means: If Expression (the one in parentheses above) is true, then execute Statement1. If Expression is not true, then execute Statement2.

Expression (the one in parentheses above) is almost always a logical (boolean) expression. If Expression is not of Boolean type or logical type, then the if statement explanation becomes like this: if Expression (the one in parentheses) evaluates to a nonzero value, then execute Statement1. If Expression evaluates to zero, then execute Statement2.

Note: Statement1 above is called the then-clause and Statement2 is called the else-clause.

Remarks:

1. If Statement1 (the then-clause) is executed, then the program skips the else-clause and moves to the statement that follows the else-clause. If Statement2 (the else-clause) is executed, then the program moves directly to execute what follows the else-clause.

2. Statement1 and/or Statement2 can be a block of statements included within { }

Example 1: Write a program to read a real number x and to compute and display f(x), where f(x)=5x if x is negative and f(x)=3+x if x is nonnegative.

Solution:

#include <iostream>
// Line 1

using namespace std;
// Line 2

int main()

// Line 3

{

// Line 4

double x, fx;

// Line 5

cout << "Enter a real number: "<< endl;

// Line 6

cin >> x;

// Line 7

if (x < 0.0)

// Line 8

fx = 5.0*x;
// Line 9

else
// Means if x is not less than zero (i.e. if (x >= 0.0))
// Line 10

fx = 3.0 + x;
// Line 11

cout << fx << endl;
// Line 12

return 0;

// Line 13

}

// Line 14

Remarks:

1. Notice there is no semicolon on Line 8 and on Line 10 above.

2. Suppose that you want to modify the above program to the following:

Write a program to read a real number x and to compute and display f(x), where f(x)=5x if x is negative and f(x)=3+x if x is nonnegative. Also, the program has to display whether x is negative or nonnegative.

Solution:

#include <iostream>

using namespace std;

int main()

{

double x, fx;

cout << "Enter a real number: "<< endl;

cin >> x;

if (x < 0.0)

{

cout << x << " is negative." << endl;

fx = 5.0*x;

}

else

{

cout << x << " is nonnegative." << endl;

fx = 3.0 + x;

}

cout << fx << endl;

return 0;

}

2) The if-then form: This form is used if you have a situation like: if a certain condition is true then perform an action; otherwise do no do anything. The if-then statemnet tests a particular condition (the expression in parentheses after the word if). If the condition (expression) evaluates to true or a nonzero value, then execute the statement which follows the condition (expression). If it evaluates to false or zero, then do not execute the statement that follows the condition (expression).
Syntax:

if (Expression)

Statement

The above means: If Expression (the one in parentheses above) is true, then execute. If Expression is false, then do not execute Statement.

Expression (the one in parentheses above) is almost always a logical (boolean) expression. If Expression is not of Boolean type or logical type, then the if statement explanation becomes like this: if Expression (the one in parentheses) evaluates to a nonzero value, then execute Statement. If Expression evaluates to zero, then do not execute Statement.

Remarks: Statement can be a block of statements included within { }
Example 2: Write a program to read a real number x and to compute and display f(x), where f(x)=sqrt(3x-5).

Solution:

#include <iostream>

#include <cmath>

using namespace std;

int main()

{

double x, fx;

cout << "Enter a real number: "<< endl;

cin >> x;

if (3.0*x -5.0 >= 0.0)

{

fx = sqrt(3.0 * x - 5.0);

cout << fx << endl;

}

return 0;

}

Remarks:

· Notice that if 3x-5 < 0, then the above program does not do compute and does not display anything.

· Never write something like

if (x = 2)

Instead write

If (x == 2)

Question: Write a C++ program to read an integer and to display whether that integer is even or odd.

Solution:

#include <iostream>

using namespace std;

int main()

{

int N, Remainder;

cout << "Enter an integer: " << endl;

cin >> N;

Remainder = N % 2;

if (Remainder == 0)

cout << "The number is even." << endl;

else

cout << "The number is odd." << endl;

return 0;

}

Question: Is it ok to write the program in Example1 as

#include <iostream>

using namespace std;

int main()

{

double x, fx;

cout << "Enter a real number: "<< endl;

cin >> x;

if (x < 0.0)

fx = 5.0*x;

if (x >= 0.0)

fx = 3.0 + x;

cout << fx << endl;

return 0;

}

Answer: Yes, but the first method (the one in Example1) is better, because it's more efficient. Notice that there are two comparisons in this second method (the one in if (x < 0.0) and the one in if (f(x) >= 0.0)), while in the first method there is only one comparison. Notice that in this second method there is no else part for both if statements. So, I'm replacing the if-then-else statement by two if-then statements. It's ok to do that, but not recommended, because it is not very efficient (it wastes more time).

Exercise: Write a program to read a real number x and to compute and display f(x), where f(x)=5x if x<2, f(x)=7 if x=2, and f(x)=3+x if x>2.

Method 1: Independent if-then statements.
#include <iostream>

using namespace std;

int main()

{

double x, fx;

cout << "Enter a real number: "<< endl;

cin >> x;

if (x < 2.0)

fx = 5.0*x;

if (x == 2.0) // Notice there are 2 equality signs here.

fx = 7.0; // Notice there is 1 equality sign here.

if (x > 2.0)

fx = 3.0 + x;

cout << fx << endl;

return 0;

}

Disadvantage: The computer will do 3 comparisons. For example, if x=1, then the first is satisfied, but yet the computer will check the second and the third to see whether they are satisfied. So, there is a waste of time which we can avoid.

Method 2: Nested if-then-else statements.
#include <iostream>

using namespace std;

int main()

{

double x, fx;

cout << "Enter a real number: "<< endl;

cin >> x;

if (x < 2.0)

fx = 5.0*x;

else
// Means if (x >= 2.0)

if (x == 2.0)

fx = 7.0;

else
// Means if (x > 2.0)

fx = 3.0 + x;

cout << fx << endl;

return 0;

}

Advantage: It doesn't perform unnecessary comparisons; if one alternative is satisfied it will skip all remaining comparisons.

Disadvantage: Statements keep moving to the right and also it's not very readable. Imagine if there are ten comparisons! So, we need a better way to do it. This better way is described in the third method.

Method 3:

3) if-then-else-if.
#include <iostream>

using namespace std;

int main()

{

double x, fx;

cout << "Enter a real number: "<< endl;

cin >> x;

if (x < 2.0)

fx = 5.0*x;

else if (x == 2.0)

fx = 7.0;

else
// Means if x is not < 2 AND if x is not =2, which means if (x > 2)

fx = 3.0 + x;

cout << fx << endl;

return 0;

}

Advantages:

· It doesn't perform unnecessary comparisons; if one alternative is satisfied it will skip all remaining comparisons.

· It does not keep moving to the right and more readable than the last two.
The Dangling else
A dangling else is an else that follows nested if-then statements.

Rule: In the absence of braces, an else is always paired with the closet proceeding if that doesn't already have an else paired with it.

Example: Suppose we want to write a code for: If the average is greater than or equal to 60 and less than 70, display YOU PASS, BUT HAVE TO RETAKE THE CLASS. If the average is greater than or equal to 70, display YOU PASS AND DON'T HAVE TO RETAKE THE CLASS. If the average is less than 60, don't display anything. Does the following code work?

if (average < 70)

if (average >= 60)

cout << "YOU PASS, BUT HAVE TO RETAKE THE CLASS " << endl;

else

cout <<"YOU PASS AND DON'T HAVE TO RETAKE THE CLASS ";

Answer: No. To find out why ask yourself: What will be the output if average=50? The answer is: YOU PASS AND DON'T HAVE TO RETAKE THE CLASS. This is of course not what we want. Notice that you get the previously described output because else is paired with the closet proceeding if that doesn't have an else with it. So, else is paired with the second if not the first. But, we want it to be paired with the first if!

Question: How to fix the previous code?

Answer: There are several ways. Here's one of them:

if (average < 70)

{

if (average >= 60)

cout << "YOU PASS, BUT HAVE TO RETAKE THE CLASS " << endl;

}

else

cout <<"YOU PASS AND DON'T HAVE TO RETAKE THE CLASS ";

Explanation: Notice that we have braces now around the second if statement. Including the second (inner) if statement within braces indicates the second if statement is complete. So, the else must belong to the first (outer) if.

1
1

