Handout 8

 (Why relational expressions, logical expressions, and the if statement)

Question: Why do we need relational expressions and logical expressions?

Answer: We need them for the if statement and for other control structures which we will discuss in the future.

Question: What are control structures and what is the if statement?

Answer: Usually the order in which statements are executed in a program or a function (this order is called flow of control) is sequential (i.e. when a statement is finished executing, control passes to the next statement). Thus, the default flow of control in a program or a function is sequential. But, sometimes we may not be able to do what we want with a sequential flow of control. So, we need mechanisms to force the program or function to execute some statements in a non-sequential order. For example, we may want to execute a statement or a group of statements only if a certain condition applies, we may want to repeat executing a statement or a group of statements a specific number of times, we may want to repeat executing a statement or a group of statements until a certain condition is met, etc.

To make the flow of control non-sequential, use control structures (branching mechanisms). So, control structures are statements that transfer control to a statement which may be different than the next.

The if statement is one of those control structures. The if statement is used to select from several alternatives of executable statements or to execute a statement or a group of statements only if a certain condition is met. There are several forms of the if statement. In one of them the if statement is a branching mechanism that lets the program choose between two alternative actions, choosing one or another depending on the truth value of the expression in parentheses in the if statement. This form is called the if-then-else form. There is another form of the if statement. In that form, an action is performed if the expression in parentheses evaluates to true. If that action is false, then no action is performed. This form is called the if-then from.

Logical Operators

We are interested in 3 logical operators:

(1) && which stands for AND. Notice that && takes two operands. Notice also that there is no space between the two symbols of &.

(2) || which stands for OR. Notice that || takes two operands. Notice also that there is no space between the two symbols of |.

(3) ! which stands for NOT. Notice that ! takes one operand.

All operands are logical (Boolean) expressions.

Remarks: Let Expression, Expression1, and Expression2 be logical expressions. Then

1. (Expression1 && Expression2) is true only if both Expression1 and Expression2 are true. Otherwise it's false.

2. (Expression1 || Expression2) is false only if both Expression1 and Expression2 are false. Otherwise it's true.

3. !Expression is true if Expression is false; otherwise it's true.

Remarks:

!(a == b) is equivalent to a != b

!(a == b && c <= d) is equivalent to (a != b) || (c > d)

!(a < b || c != d) is equivalent to ((a >= b) && (c == d))

Example: Let A and B be integer variables and let A = 1 and B = -3. Then

(A > 0 || B != -3) is true.

(A + B < 0 && A == -1) is false.

Note: If A is a variable of type bool, then !!A is the same as !(!A)

Note: If the operands of ||, &&, ! are not logical, then the values of non Boolean expressions are temporarily coerced to type bool. A zero value is coerced to false and any nonzero value is coerced to true.

Warnings:

1. Let N be a real or integer variable. Do not write an expression like (N==5 || N==2) as (N == 5 || 2)

2. Let N be a real or integer variable. Do not write an expression like (3 < N && N < 7) as (3 < N < 7)

3. Avoid comparing real values for equality. Instead compare them for near equality.

