Handout 19

Selection Sort

Page 679

Suppose you want to sort an array (or a list of elements) in ascending order (i.e. from lowest to highest) or in descending order (i.e. from highest to lowest). Sometimes if the data is sorted, your program will be more efficient (e.g. the running time of the program will be less; you may not notice that if you have small data, but if you have huge data, then you'll notice the difference). In this class, we'll discuss a few sorting algorithms. In the future, you'll study more sorting algorithms. Some algorithms are faster than others. In this handout, we'll discuss selection sort. Without loss of generality, assume that what we want to sort is a 1D array. Assume the array is A and assume it has N elements. Here's how to sort A in ascending order using selection sort:

for (i = 0 ; i < N - 1 ; i++)

{

(Find the index (subscript) of the smallest element of the subarray

of A with subscripts (indices) ranging from i through N-1.

Call this index MI.

(Swap the element at position i with the element at position MI.

}

Here's how to sort A in descending order using selection sort:

for (i = 0 ; i < N - 1 ; i++)

{

(Find the index (subscript) of the largest element of the subarray

of A with subscripts (indices) ranging from i through N-1.

Call this index MI.

(Swap the element at position i with the element at position MI.

}

Example: The following program sorts array A (A is a 1D array of type int) in ascending order. After we sort A, we'll end up with:

A[0] (A[1] (A[2] (… (A[N - 2] (A[N-1].

// Selection Sort of 1D array in ascending order.

#include <iostream>

using namespace std;

int Min_Ind(int [],int,int);

void Selection_Sort(int [], int);

int main()

{

int i;

int N, A[100];

cout << "Enter the size of the array: ";

cin >> N;

cout << "Enter the elements of A:" << endl;

for (i = 0; i < N; i++)

cin >> A[i];

Selection_Sort(A,N);

cout << "The sorted array is:" << endl;

for (i = 0; i < N; i++)

cout << A[i] << " ";

cout << endl;

return 0;

}

int Min_Ind(int A[], int i, int N)

{

// This function finds the index, MI, of the smallest element of the

// subarray of A whose indices (subscripts) range from i to N-1.

int k, MI;

MI = i;

for (k = i+1; k < N; k++)

if (A[k] < A[MI])

// Line *

MI = k;

return MI;

}

void Selection_Sort(int A[], int N)

{

int i, MI, Temp;

// MI is the index of the minimum in

// the subarray of A whose indices start at

// i and end at N-1.

for (i = 0; i < N - 1; i++)

{

// Find MI.

MI = Min_Ind(A,i,N);

// Swap the element at index i with

// the element at index MI.

Temp = A[i];

A[i] = A[MI];

A[MI] = Temp;

}

}

Remark: If you want the array to be sorted in descending order, all you have to do is to replace Line * in the previous program by the following line

if (A[k] > A[MI])

You may also change the name of the function (in which Line * exists) to Max_Ind.

If you sort A in descending order, then after sorting you must end up with:

A[0] (A[1] (A[2] (… (A[N - 2] (A[N-1].

1
1

