Handout 16 (Part I)

Functions

Chapters 7 & 8 and extra material.

What are functions?

A function is like a small program.

Example:

float X = 5, Y;

Y = sqrt(X);

cout << Y << endl;

sqrt is a function that computes square root. So, sqrt(X) computes the square root of X and returns it. X is called an argument. Notice that the call to the function sqrt is not standing alone. It's in an expression. Notice also that the following code does exactly the same thing as the previous one:

float X = 5;

cout << sqrt(X) << endl;

And the following code does exactly the same as the previous ones:

cout << sqrt(5) << endl;

Notice that sqrt(X) returns exactly one function value which is the square root of X.

Question: How many function values the function can return and how many arguments the function can have?

Answer: A function can return exactly one function value via the return statement. Such a function is called a value-returning function, or it does not return function values at all (a function value is a value returned from the function to its caller via the return statement). Such a function is called a void function. Also, a function (either type) can have any number of arguments or no arguments at all.

Examples:

· The function pow has two arguments. E.g. pow(X,Y) returns one function value which is XY and it has two arguments which are X and Y. For example, if we want to compute 37 and display it, then we do the following

cout << pow(3,7) << endl;

Notice that the call to the function pow is not standing alone. It's in an expression. The same thing is valid for any value-returning function. But it is not valid for void functions.

· The function getline has two arguments but it does not return a function value. Thus, it's a void function. Therefore, the call to this function (and to any other void function) must stand alone. It cannot be part of an expression.

Notice that we used to call a function by using its name and passing a value/values to it (i.e. input).

Question: Why do we need functions?

Answer: Functions help organize the program, shorten them, make them more readable, and most importantly, they save us lots of efforts. For example, suppose that in your program, you want to compute the factorial for 10 numbers. Then it will be really tedious to write code for doing that 10 times. Also, if we do so, then the program will be long and hard to read. So, instead we write the code just once (i.e. as a function) and then we call that function 10 times (or as many times as we want). In the future, we'll talk about how to build our own libraries and how to include functions in those libraries in order to use them in any program we write. Such libraries will save us too much efforts.

Question: When to use functions?

Answer: If the program is easier to understand with functions than without them. For example, if the function's body is long, or if we use it more than once, then it's better to use functions.
In the previous examples, we have seen built in functions. The question is: can we write our own functions (that is user-defined functions)? The answer is yes. For example, suppose that we want to write a function to compute M!, where M is a nonnegative integer, and suppose we want to call that function Factorial. Thus, we want our function to have one argument (i.e. to pass one value to it (i.e. one input)) and to return one function value which is the factorial of the argument. Here is how to write the function:

long Factorial(long M)

{

long I = 1, P = 1;

while (I <= M)

{

P = P * I;

I++;

}

return P;

}

Notice that the function Factorial is similar to the main function with some differences. For example, both functions have bodies included in braces. Both have a return statement, but the function main returns usually 0. The function factorial returns the factorial of the argument.

Question: How to include the function Factorial in a program and how to call it?

Answer:

// Program 1.

#include <iostream>
// Line 1

using namespace std;
// Line 2

long Factorial(long R);
// Declaration of function Factorial (i.e. function prototype). This is Line 3.

int main()

// Line 4.

{

// Line 5.

long N, Y;

// Line 6.

cout << "Enter a nonnegative integer: " << endl;

// Line 7.

cin >> N;

// Line 8.

Y = Factorial(N);

// A call to function Factorial. This is line 9.

cout << Y << endl;
// Line 10.

return 0;

// Line 11.

}

// Line 12.

long Factorial(long M)
// Line 13

{

// Line 14

long I = 1, P = 1;
// I and P are called local variables. This is Line 15

while (I <= M)
// Line 16

{

// Line 17

P = P * I;
// Line 18

I++;

// Line 19

}

// Line 20

return P;

// Line 21

}

// Line 22

I'll comment on this function while I'm explaining functions in general.

Remark: Without function factorial, your program would probably be similar to the following:

#include <iostream>

using namespace std;

int main()

{

long N;

cout << "Enter a nonnegative integer: " << endl;

cin >> N;

long I = 1; P = 1;

while (I <= N)

{

P = P * I;

I++;

}

cout << P << endl;

return 0;

}

Remarks:

1. The name of a function (like any other identifier) can't include blanks.

2. If in your program, you have a function called MyFunction, then do NOT declare another identifier of the same name. For example, do not have a variable of name MyFunction.

3. A function is called by writing its name and passing input to it. In our program above, we call the function Factorial in Line 9. The call part is Factorial(N). I.e. the function call in Program 1 is Factorial(N). The input which we passed to the function is a copy of the value of N.

When a function is called, logical control is passed from the caller to the first statement in the function's body. When the last statement in the function is executed, logical control returns to the point of the caller immediately after the function call, so functions are control structures. Thus, a function call results in the execution of the body of the called function. Notice that the caller to the function main is the operating system and notice also that a function can call any other function . A function can even call itself. Such function is called recursive. We'll cover recursive functions later.

4. Arguments are items listed in the call to a function. I.e. what appear in the parentheses when we call the function. In our program above, there is one argument only which is N. See Line 9. Arguments are sometimes called actual arguments or actual parameters.

5. There are two types of arguments; arguments by value and arguments by reference. Arguments by value are the ones we have seen in the functions sqrt, pow, and Factorial. Arguments by value can be constants or variables or expressions, while arguments by reference must be variables (they can't be constants or expressions). Here are some examples:

(a) Here the argument to function Factorial is a constant:

long A;

A = Factorial(5);

(b) Here the argument to function Factorial is a variable:

long A, H = 5;

A = Factorial(H);

(c) Here the argument to function Factorial is an expression:

long A, H = 3;

A = Factorial(H * H + 1);

(d) Here the argument to function Factorial is an expression:

long A, H = 3;

A = Factorial(2+pow(2,H));

Arguments by value are input only. They cannot be output or (input and output). When a function is called via an argument by value, a copy of the value of that argument is sent to the function as input. If the argument is an expression, then the expression is evaluated and a copy of the result is sent to the function.

6. Parameters are variables declared in the function heading. The function heading is the first line of the function. For example, in function factorial, the function heading is

 long Factorial(long M)

Notice that there is no semicolon at the end of that line. Including the semicolon will result in a syntax error. Notice also that the function heading starts by writing the type of the function-value the function will return. That type is called the type of the function. For example, function Factorial is of type long. Then after writing the type of the function, we write the name of the function. After that, we write the parameter list included in parentheses. In function Factorial, there is one parameter which is M. Notice that in the function heading, we're declaring M to be a variable of type long. Parameters can be value parameters (as it's the case with the parameter M in function Factorial) or reference parameters. A value parameter is a parameter that receives a copy of the corresponding argument. Thus, if the value of the value parameter is changed in the function, the corresponding argument will not change. A reference parameter is a parameter that receives the memory location of the corresponding argument. Thus, if the value of the reference parameter is changed in the function, the corresponding argument will change.

Note: unlike value arguments, reference arguments can't be constants or expressions. They must be variables.

Note: If the function has no parameters, then the parentheses following the name of the function are left empty. Also, when you call such a function, you leave the parentheses empty. Some people, include void in the function heading, but most people leave the parentheses empty.

7. The number of parameters (in the function heading) should be the same as the number of arguments (in the function call) and each argument should have the same data type as the parameter in the same position. If they are not of the same data type, then implicit type coercion takes place. If the argument is an expression, then the expression is evaluated and a copy of the result is sent to the corresponding value parameter. If there is more than one argument passed to the function, then the arguments and parameters are matched by their relative positions in the two lists. Notice also that a value parameter must correspond to a value argument and vice versa. Also, a reference parameter must correspond to an argument by reference and vice versa. Notice also that parameters don't have to be of the same type.

8. Arguments (if they are variables) and parameters can have the same name or different names. For example, in function Factorial above, we can replace M (in the function heading (Line 13) and the function's body) by N. Similarly, we can replace N in the call statement (Line 9) and in the body of function main by M.

9. There are 2 types of functions:

(a) Value-returning functions (as sqrt, pow, Factorial). A value-returning function returns exactly one function value to the caller. For example, Factorial(N) returns to function main the factorial of N. sqrt(N) returns the square root of N. pow(X,Y) returns XY. Thus, a value-returning function must contain a return statement. What will be returned by the function to the caller via the return statement is the value of constant/variable/expression that appears after the word return.
 For example, the return statement can be like

return 3;
// Here the returned value is 3.

or

return N;
// Here the value of variable N is returned.

or

return 2*N + 1;
// Here the value of the expression 2 * N + 1 is returned.

The call to a value-returning function must appear in an expression. It can't stand alone. For example, when we called the function Factorial in program 1 above, the function call (i.e. Factorial(N)) appeared in an expression (See Line 9). A value-returning function can have one argument, more than one argument, or none.

Question: how can we make a function return more than one value? We'll answer this question later.
(b) void functions. These functions do not return function values. So, they don't return anything via a return statement. Almost always, they contain no return statement. If they contain a return statement, then that return statement should be
return;

So, nothing is returned via a return statement. Such return statement is used to terminate the function (i.e. exit function immediately) and return control to the caller. It is not used for returning values. But, void functions can return values via arguments by reference.

10. The function definition is the function heading together with the function's body. In Program 1 above, the Factorial function definition is Line 13-Line 22. Usually, the function definition (other than the function main of course) comes after function main.

11. Since every identifier must be declared before it's used, every function must be declared before it's used. The way to do it is exactly the same as we did on Line 3 of Program 1. All you need to do is to take a copy of the function heading (e.g. a copy of Line 13 of Program 1) and insert it, with a semicolon at the end, somewhere between

using namespace std;

and function main. The generated line is called the function prototype (i.e. function declaration). Factorial function prototype in Program 1 is Line 3. I.e. it's

long Factorial(long R);

Every function (other than function main) must have a function prototype. If there are several functions in the program, the order in which their function prototypes are listed is not important.

Note: function prototype for math functions like sqrt, pow, sin, etc, are declared in the header file cmath. Thus, the prototype of each one of these functions is in that header file. Similarly, other built-in functions are declared in header files.

12. In the function prototype, you can drop the variables. But, it's better to include them. Most people do include them. For example, we can replace Line 3 in Program 1, by

long Factorial(long);

13. Notice also that the name of the variables in the function prototype can be the same as the names of the variables in the function heading and can be different. For example, in function Factorial above, we can replace M (in the function heading (Line 13) and the function's body) by R. Similarly, we can replace R in the function prototype (Line 3) by M.

14. If you include the function prototype for each function in the program, the order in which the functions are defined becomes not important. So, in that case, you can define them in any order you want. Also, in that case, a function can be called from anywhere of function main or any other function. If you don't include function prototype, then , then function B can call function A only if function A is defined before function B.

15. You can include a call to a function in a call to another function. For example, it's ok to have

sqrt(fabs(3 * X - 1));

In the statement above, function sqrt is calling function fabs.

16. A local variable/constant is a variable/constant declared in the body of a function. Such variable/constant is not accessible outside that function (it's visible only in the function in which it's decalred). It's accessible only in the function where it's defined. The scope of a variable is defined to be the area of the program were that variable is visible (accessible). Thus, the scope of a local variable/constant is the function were it's defined. For example, in function Factorial, there are 2 local variables; I and P. A function can have one local variable, more than one, or none. Local variables occupy memory space only while the function in which they are defined is executing. The value of a local variable is undefined when the function starts executing. Notice that, you can use the same variable/constant name in more than one function. For example, if you have two functions in the program, say they are Function1, Function2, then you can declare a local variable with the same name in both of them, say the name is N. Function1 will know nothing about variable N in Function2 and vice versa. On the other hand, value parameters are automatically initialized to the values of the corresponding arguments.

Example on a function with two arguments:

// Program 2.

include <iostream>

using namespace std;

double Max(double N, double M);
// Function prototype for function Max. This is Line 3.

int main()

{

double X, Y;

cout << "Enter 2 real numbers to display their maximum: " << endl;

cin >> X >> Y;

// Now call function Max and display the value returned by that function.

cout << Max(X,Y) << endl;
// Line 10.

return 0;

}

double Max(double N, double M)
// Function heading. This is line 13.

{

if (N >= M)

return N;

else

return M;

}

Remarks about function Max:

1. It's of type double (i.e. the function value returned by Max is of type double).

2. It has two value parameters; N and M. Both are of type double. Thus, a call to function Max must contain two value arguments. The two value arguments are X and Y. N must be of the same type as X and M must be of the same type as Y. Of course, this is the case in our program. Since function Max returns a function value, the call to this function (see Line 10) appeared in an expression (i.e. it is not standing alone).

3. When function Max is called (Line 10), copies of the value arguments X and Y are passed to the value parameters of function Max. Thus, when Max is called, N will have the same value as X and M will have the same value as Y.

4. The function header (as it's the case in the textbook) can be written as:

double Max(double N,

double M)

But, the standard way is the way I do it.

5. Function Max has 2 return statements not 1. When a return statement is encountered, control returns immediately from the called function (in this case it's Max) to the caller (in this case it's main).

6. You can write Max with one return statement only. Here's how:

double Max(double N, double M)

{

double Z,
// Z is a local variable.

if (N >= M)

Z = N;

else

Z = M;

return Z;

}

7. Suppose in your program, you want to use function Max to compute the maximum of 3 * X + 1 and 8 * Y - 1, then you replace Line 10 of Program 2 by

cout << Max(3 * X + 1, 8 * Y - 1) << endl;

Example on a function with no parameters:

The function main in each program.

Example on a void function:
// Program 3.

#include <iostream>

using namespace std;

void EmptyLine(int K);
// function prototype of EmptyLine. This is Line 3.

int main()

{

int M = 3;

cout << "This program is written by: ";

EmptyLine(M);
// Function call (for EmptyLine).

cout << "Iyad Abu-Jeib";

EmptyLine(M);// Function call (for EmptyLine).

cout << "in the Fall semester 2001.";

EmptyLine(M); // Function call (for EmptyLine).

return 0;

}

void EmptyLine(int N)
// Funtion heading

{

// This function displays N-1 empty lines.

int I = 1;

while (I <= N)

{

cout << endl;

I++;

}

}

Remarks about the previous program:

1. Function EmptyLine is of type void. Thus, it does not return a function valueto its caller and also a call to this function must stand alone (i.e. can't be in an expression).

2. EmptyLine has one value parameter which is N.

3. When it's called, a copy of the value argument M is passed to it. Thus, N will be assigned the value 3 when the function is called.

4. N, M, and K, are of the same data type which is int.

Example on a function calling another function:

PAGE
7

