Handout 12

Repetition: The while Loop (Statement)

A loop is a control structure that causes a statement or a group of statements to be executed repeatedly.

Question: Why do we need the while loop?

Answer: When we need to repeat executing a statement or a group of statements for a specific number of times or when we want to repeat executing a statement or a group of statements until we want to stop or until a specific condition (termination condition) signals that it's time to stop. In the second situation, one can't know how many times the loop will be executed.

Syntax:

while (Expression)

Statement;

Note 1: Statement can be a single statement or a compound statement (i.e. a group of statements included in braces).

Note 2: Statement is called the body of the loop.

The while statement (loop) means: if Expression (the one in parentheses) evaluates to true, execute Statement (the body of the loop) and then go back and test Expression again. If Expression evaluates to true, then repeat the whole process. If Expression evaluates to false, then skip the body of the loop and moves to what follows it. In other words, when execution reaches a while statement (loop), the following happens:

1. Expression (the one in parentheses) is evaluated.

2. If Expression is true (i.e. evaluates to true):

(a) Statement (the body of the loop) is executed.

(b) Then it goes back to step 1.

3. If Expression is false (i.e. evaluates to false), then Statement (the body of the loop) is skipped and moves to what follows the while statement.

We can summarize the explanation of the while statement (loop) as follows: Execution of Statement is repeated as long as Expression is true and terminates when it becomes false.

Thus, Statement is either skipped, executed once, or executed over and over.

Remarks:

1. The loop exit occurs only at one point (when the loop test is performed). If the termination condition became satisfied midway through the execution of the loop, the current iteration is completed and the exit occurs only when the entire body of the loop is executed. This is because the checking process occurs at the beginning.

2. Number of iterations: Number of times the body of the loop is executed.

3. If the first value of Expression is false, then the body of the loop is never executed.

4. There is no semicolon after the line: while (Expression)
5. Expression (the one in parentheses) can be of any simple data type, but almost always it's a logical (or relational or Boolean) expression. If it is not logical (or Boolean or relational), then its value is implicitly coerced to type bool (zero will mean false and a nonzero value will mean true).

There are two types of the while (loop) statement:

1. Count-controlled loop: A loop is executed a specific number of times.

2. Event-controlled loop: A loop terminates when something inside the loop's body signals that the loop has to be terminated. This type is divided into three subtypes:

(a) Sentinel-controlled: Used to read in and process a long list of data. Each time the loop's body is executed, a new piece of data is read and processed. A special value called the sentinel is used to signal there is no more data to be read.

(b) End-of-File-controled: Used in order to avoid error caused by trying to read data when the end of file is reached. We use it in order to check whether the end of the file has been reached. If yes, then we stop reading from the file.

(c) Flag-controlled.
Example 1: Write a C++ program to read a positive integer N and to compute and print the sum of integers from 1 to N.

Solution:

#include <iostream>

using namespace std;

int main()

{

int I, N, Sum = 0;
// Do not forget to initialize Sum.

cout << "Enter a positive integer:" << endl;

cin >> N;

I = 1;
// This initialization step is necessary. And it must be done before the while loop.

while (I <= N)

// Notice there is no semicolon here.

{

Sum = Sum + I;
 // The body of the loop starts here. This is line 11

I = I + 1; // You must increment I. The body of the loop ends here. This is line 12.

}
// Notice there is no semicolon here.

cout << Sum << endl;

return 0;

}

Question: What will happen if we switch lines 11 and 12?

Exercise: Write a C++ program to read two positive integers M and N, where M <= N and to compute and print the sum of the integers from M to N.

Example 2: Write a C++ program to read a positive integer N and to compute and print N!.

Solution:

#include <iostream>

using namespace std;

int main()

{

int I, N, Factorial = 1;
// Do not forget to initialize Factorial

cout << "Enter a positive integer:" << endl;

cin >> N;

I = 1;
// This initialization step has to be done. And it must be done before the while loop.

while (I <= N)

// Notice there is no semicolon here.

{

Factorial = Factorial * I;

// The body of the loop begins here.

I = I + 1;

// You must increment I. The body of the loop ends here.

}

cout << Factorial << endl;

return 0;

}

The above examples are examples of count-controlled loops.
Example 3: What is the output of the following? Here I and K are of type int.

I = 1;

K = 0;

while (I <= 5)

{

K = K + I;

I = I + 2;

}

cout << K << endl;

Answer:

9

Example 4: What is the output of the following? Here I and K are of type int.

I = 1;

K = 0;

while (I + 2 <= 5)

{

K = K + (2 * I - 1);

I++;

}

cout << K << endl;

Answer:

9

Example 5: What is the output of the following? Here I and K are of type int.

k = 1; I = 1;

while (I <= 5)

{

k = k * 3 ;

I++;

}

cout << K << endl;

Answer:

243

Question: Do you know what the previous three examples are computing?

Here is an example of sentinel-controlled loops.

Example 6: Write a C++ program to keep reading positive real numbers until a nonpositive real number is read. The goal of your program is to find the maximum of the read positive numbers and to display (print) that maximum.

Solution:

#include <iostream>

using namespace std;

int main()

{

double Number, Max;

cout << "Enter a real number:" << endl;

cin >> Number;
// This is called priming read. It is necessary.

Max = Number;

while (Number > 0)

{

if (Number > Max)

Max = Number;

cout << "Enter a real number:" << endl;

cin >> Number;

}

cout << Max << endl;

return 0;

}

1
1

