CSIT 121

Computer Science I

Fall 2006
Syllabus and Course Policies

Instructor:
Dr. Iyad Abu-Jeib

Office: 109 Fenton Hall

Office Phone: 673-4757

Office Hours: MWF 4:00-5:00 PM, F 11:00-12:00 Noon, T 2:00-3:00 PM.

E-mail: abu-jeib@cs.fredonia.edu
Website: http://www.cs.fredonia.edu/abu-jeib
Meeting Times:
MWF 10:00 - 10:50 Fenton 2164.
Textbook: Programming and Problem Solving With C++, 4th Edition, by Nell Dale and Chip Weems, Jones and Bartlett Publishers, Inc., 2005.

Prerequisite: NYS Regents Course III or MATH 104.
Grading:
1. Two hour exams and a comprehensive final. Each hour exam will consist 15% of your course grade. The final will consist 25% of the course grade.

2. Assignments. The assignments will consist 15% of your course grade.

3. Quizzes. The quizzes will consist 20% of the course grade.

4. Attendance. Attendance will consist 10% of the course grade. Here is the attendance policy:

a) You'll be allowed to miss at most 3 classes with no documented acceptable excuse.

b) Any class you miss after the first 3 classes described above will result in deducting 2% of your course grade. This applies until the 10% portion of the course grade assigned for attendance is consumed.

c) If the student does not have satisfactory attendance, the student may not be notified, but I'll take a note of that and keep it in my records until I assign the course grades at the end of the semester.

d) You must be on time. You must not leave before the class ends. Repeated late arrival or early departure may be considered as absence.

e) Excusable absence must be documented and must be inline with the college's policy about that. You must inform me in advance if you intend to miss class for a legitimate reason such as death in the family (with a proof) and illness (with a doctor's report). Absences for family gatherings or family problems or to catch a flight or because of another course, etc, are not considered excusable absences.

Remark: There is a possibility that I may not include attendance for those who don’t want to count attendance in the course grade. If that is the case, the 10% portion of the course grade that is assigned for attendance will go for the final exam.

Attendance: Attendance is required (see above). You are responsible for material presented in class and for announcements announced in class. If you miss a class, it’s your responsibility to ask about the material covered in the class you missed and about the announcements announced that day. Make ups of exams/quizzes/worksheets are allowed only if you have a documented hardship. Late assignments won’t be accepted. Any measure to improve your grades (like extra-credit, extra points, and dropping a quiz/assignment (if happened)) may apply only to students who have satisfactory attendance.

Incomplete: Incomplete grade will be given only if you meet the university guidelines for incomplete.

Grading Scale: 92-100: A, 90-91: A-, 88-89: B+, 82-87: B, 80-81: B-, 78-79: C+, 72-77: C, 70-71: C-, 68-69: D+, 62-67: D, 60-61: D-, < 60: E.

Behavior: Inappropriate behavior will not be tolerated and severe consequences may follow. Any behavior that may result in disturbing the class, students, or the professor, is considered an inappropriate behavior.

Remarks:
1) This course is CCC (Mathematics/Quantitative Reasoning) and it’s required for CS majors.

2) I may assign extra work to do for bonus points or do something else to improve your grades. Such work (if assigned) will be optional.

3) If you need help, please do not hesitate to ask for it. My job is to help you understand the material and succeed. I’ll be extremely happy to answer your questions and to assist you.

4) If you have a hardship, please let me know in advance.

5) I’ll be extremely happy to get a feedback from you about my teaching style and the level of difficulty of the exams and the assignments. We have to work together to make improvements if such improvements are needed. You can provide me with feedback directly or indirectly (by leaving a note underneath my office door or using the teaching feedback form on my website).

6) You must do your assignments by yourself. Do NOT work in pairs or in groups.

7) I may cover material not available in the textbook. You are responsible for such material and for everything I mention in class.

8) I may not grade all the assignments and I may not grade all the questions in the assignment I decide to grade.
9) Check your Fredonia email daily. I may contact you any day by email.

10) Cheating in any form will not be tolerated.

11) The syllabus is subject to change.

12) Bring your Fredonia ID to the exams and the quizzes.

13) The grading scale is subject to be made more flexible if that’s needed to improve the grades.

Objectives:
C++ is a high-level object-oriented programming language. Programming languages like C++ enable us to perform complicated and/or long tasks in a short time, with a great deal of precision and organization, and with reasonable efforts. They enable us to store the results on a file and retrieve them and use them whenever we want.

In this class, we will learn how to design C++ programs. Among the programs we will design, there will be programs involving:

1. How to read input data from the keyboard and how to display the output on the screen.

2. How to read input data from input files and how to display the output on an output file.

3. How to perform mathematical calculations.

4. How to sort and search data.

5. How to search an input file or an input statement or an input line for a specific character or string.

6. How to format the output.

Among the things we’ll cover, we’ll discuss:

1. How to organize programs (by using functions, classes, structures, header files, etc).

2. How to minimize the running time of the program and shorten the program (e.g. by using recursive functions).

3. How to find the output of a program and how to discover errors in a program.

4. Compile-time errors, run-time errors, and logic errors.

5. Programming style.

In this class, we’ll use Visual C++ (located within Visual Studio package) to compile and run our C++ programs.

Note: Visual C++ is different than C++ itself. It enables us to create user-interface programs with little efforts.

Why C++?
C++ is one of the most popular and powerful languages for both academia and industry. You always find companies asking for C++ programmers. And many of the data structures books and other computer books use C++ for writing their algorithms. C++ is widely used and will remain so for a long time.

C++ (A Brief History):
In the late 1960s and early 1970s, the programming language, C, was created at At&T Bell Labs by Dennis Ritchie. He created it because simply he wanted a language easier to use and to understand by people to replace the more difficult low-level assembly language that was the dominant language at that time. His idea of creating the C language came up when a group of people at the Bell Labs where designing the UNIX operating system which initially was written in assembly language. After Ritchie created C, approximately 90% of UNIX was reprogrammed in C. Ritchie called his new language C, because he adopted features from a programming language called B in C.

In 1985 another scientist of Bell Labs, Bjarne Stroustrup, created C++. C++ is just an expansion of C. It includes features for object-oriented programming and others. The new language (which includes C as a subset) was called C++ because it added more features to C. The ++ is the increment operator in C++ (e.g. M++=M+1 which means increment the value stored in the variable M by 1).

After C++ was invented, some companies added new features to it and so slightly different versions of C++ started to appear until it was standardized in mid-1998.

Basic Definitions:
Machine language: A computer internal language that consists of binary-coded instructions. Of course, the computer understands this language.

Assembly language: A low-level programming language that is easier for humans to use and to understand, but not as easy as high-level programming languages. We can say that assembly language lies in the “middle” between machine language and high-level languages. The computer does not understand this language (it is different than the language it understands which is called machine language) and so it needs a program to translate it to a language it can understand (machine code). The program that does that is called an assembler.

High-level language: A language that is easy to work with by people (like C++, Fortran, etc.). The computer cannot understand a program written in such languages (called a source program) without a translator (a program that translates such languages into machine code). The translator is called compiler and the machine version of the source program is called an object program. Every program you write in C++ or any other high-level language (source program) must be compiled (translated to an object program) before executed. When you run the program, control transfers from the computer’s operating system (a set of programs that manages the computer’s resources) to the program.

Topics (not necessarily in order):
Program structure, data types (both built-in and user-defined), identifiers, statements, expressions, conditions, library functions, strings, files, if statement, while, do while, for loop, switch statement, break and continue statements, functions, parameters (by reference and by value), operators (logical, increment, decrement, etc), structures, arrays, header files (both built in and user-defined), recursion, formatting the output, scope, and related topics (to all of the previously mentioned topics). If time permits, we’ll cover other material. Some of the material we'll cover is not in the textbook. In details the topics are:

· Identifiers, variables, constants, assignment statement.

· Input, output, basic numeric data types (short, int, long, unsigned int, unsigned short, unsigned long, float, double, long double, char, bool).

· Whitespace characters.

· Math functions.

· char functions such as tolower and toupper.

· Postincrement, preincrement, postdecrement, and predecrement operators.

· The break and cls system commands.

· Logical and bitwise operators and expressions.

· The if, if else, if else if, statements.

· Shortcut operators (such as +=, -=, /=, %=, *=) and the conditional operator ?:.

· The while statement.

· The for statement.

· The break statement.

· The continue statement.

· do while loop.

· switch statement.

· Functions and operators for strings such as the concatenation operator, size, length, substr, find, replace, at, insert.

· Value-returning functions, arguments and parameters by value, arguments and parameters by value, function prototype/declaration, void and value-returning functions.

· Built-in functions to convert from string to int and from int to string.

· Functions returning multiple values, local and global variables/constants and their scope, the scope operator ::.

· Recursion.

· Overloading.

· Text files (input and output).

· One-dimensional arrays.

· The rand and srand functions, system commands (this is in addition to the break and cls commands that were covered earlier), goto directive, header files, sending the output to the printer instead of the screen or a file.

· Arrays as arguments, multidimensional arrays, multidimensional arrays as arguments, searching arrays (linear search and binary search - recursive and non-recursive), sorting arrays.

· User-defined data types, formatting the output, error handling, and exception handling.

· structs, structs as value/reference parameters, functions returning structs, arrays of structs, structs of structs, the scope of a struct, the definition of a struct inside another struct.

· Sorting arrays of structs with respect to a struct member, searching arrays of structs, member functions (methods) of a struct, structs of arrays.

· Error handling.

· Other topics if time permits.

1
2

