Common Student Mistakes
Kenneth H. Rosen, AT&T Laboratories

Introduction

Here are some common mistakes that people studying discrete mathematics sometimes make. The list is or-
ganized chapter by chapter, based on when they first occur, but sometimes mistakes made early in the course
perpetuate in later chapters. Also, some of these mistakes are remnants of misconceptions from high school
mathematics (such as the impulse to assume that every operation distributes over every other operation).

In most cases we describe the mistake, give a concrete example, and then offer advice about how to
avoid it. Note that additional advice about common mistakes in given, implicitly or explicitly, in the solu-
tions to the odd-numbered exercises, which constitute the bulk of the Student Solutions Guide for Discrete
Mathematics and Its Applications, fourth edition, by Kenneth H. Rosen.

Solving Problems in Discrete Mathematics

Before getting to the common mistakes, we offer some general advice about solving problems in mathemat-
ics, which are particularly relevant to working in discrete mathematics. The problem-solving process should
consist of the following steps. (This four-step approach is usually attributed to the mathematician George
Poélya (1887-1985).)

1. Read and understand the problem at hand. Play around with it to get a feeling for what is going on
and what is being asked.

2. Apply one or more problem-solving strategies to attack the problem. Do not give up when one particular
tactic doesn’t work. This phase of the process can take a long time.

3. Carefully write up the solution when you have solved the problem. Make sure to communicate your
ideas clearly.

4. Look back on what you have done. Make sure that your answer is correct (think of creative ways to test
it). Also consider other ways of solving the problem, and think about how you might generalize your
results.

Your bag of problem-solving strategies may include drawing a picture or diagram; looking at special
cases or simpler instances of your problem; looking at related problems; searching for patterns; making tables
of what you know (and in general, being organized); giving names to what you don’t know and writing equa-
tions about it (or, more generally, applying the mathematical tools you have learned in algebra and other
courses); working backwards and setting subgoals (“I could solve this problem if I could do such-and-such”);
using trial and error (usually called “guess and check” in educational circles); using indirect reasoning and
looking for counterexamples (“if this weren’t true, then what would have to happen?”); jumping out of the
system and trying something totally different; or just going away from the problem and coming back to it
later. You will find it useful to read over this description of the problem-solving process repeatedly during
your study of discrete mathematics.

Here is an example of applying the problem-solving process to a problem in discrete mathematics. Sup-
pose we want to find the number of squares (of all sizes) on a chessboard. We understand this to mean not
only the obvious 64 little squares, but also the 2 x 2 squares (of which there will be many), the 3 x 3 squares,
and so on, up to the entire 8 x 8 board itself. We should draw a picture to see what’s going on here. Let’s
begin by playing with a smaller version of this problem, using a board of size 2 x 2. Then obviously there
are 4 small squares and the entire board, for a total of 4 + 1 = 5. Let’s try a 3 x 3 board. Here there are 9
little squares, and it is easy to see that there are 4 squares of size 2 X 2 (nuzzled in the upper left, the upper
right, the lower left, or the lower right), as well as the entire board; so the answer here is 9 + 4 + 1 = 14.
A pattern seems to be emerging—we seem to be adding perfect squares to get the answer. Maybe for the
4 x 4 board there will be 16 +9 + 4+ 1 = 30 squares in all. We draw the 4 x 4 picture and verify that this is
correct. In fact, we can see exactly what is going on, the way the upper left corner of a k x k square can be

1

in any of the first 5 — k rows and first 5 — k columns of the board, for k = 1, 2, 3, 4, and so there are (5 — k)2
squares of size k in the 4 x 4 board, exactly as our sum indicated. We have now solved the problem and can
write up a solution explaining why the answer is 8 + 72 + 62 + 52 +42 + 32 + 22 + 12 = 204. In the looking

n
back stage (step 4) we would certainly want to notice that for an n x n board, there are Y i squares. To

=1
continue our investigation, we might want to explore such further questions as allowinglrectangles rather
than squares, looking at rectangular chessboards rather than square ones (or counting triangles in boards
made up of triangles), or moving to 3-dimensional space and counting cubes in a large cube. Notice how we
followed the process outlined above and used many of the strategies listed.

List of Common Mistakes

If students or instructors have items to add to the lists below, please let the author know.

Chapter 1

1. Incorrectly translating English statements involving implication into symbolic form. There are many
errors of this type. For example, there are difficulties with the use of the word “or” in English; be sure
to differentiate between inclusive and exclusive versions (see page 5 of the text). An implication is quite
different from a conjunction, but some speakers fail to distinguish them; to say that B will happen if A
happens is quite different from saying that A and/or B will happen. Perhaps the most common mistake
is confusing p — q with ¢ = p. To say, for example, that I will go to the movie if I finish my homework
means something quite different from asserting that I will go to the movie only if I finish my homework.

2. Incorrectly negating compound statements without using De Morgan’s laws—in effect saying, for exam-
ple, that —(pV q) is logically equivalent to —pV —q, or that —(p A q) is logically equivalent to —p A —q.
For example, if it is not true that John is over 18 years old or lives away from home, then it is true that
he is not over 18 years old and (not or) he does not live away from home. The correct statements are
that =(pV q) is logically equivalent to —p A =g, and that —(p A q) is logically equivalent to —pV —gq. This
mistake is a general instance of assuming that every operation distributes over every other operation,
here that negation distributes over disjunction (or conjunction).

3. Incorrectly forming complements of sets without using De Morgan’s laws—in effect saying, for exam-
ple, that ANB = AN B. The correct statements are ANB = AUB and AUB = AN B. This is
another general instance of assuming that every operation distributes over every other operation, here
that complementation distributes over intersection (or union). Students sometimes make similar errors
in algebra, such as asserting, incorrectly, that va? + b2 = a + b or sin(a + 8) = sin « + sin 3.

4. Misinterpreting the meaning of the word “any” in a mathematical statement. This word is ambiguous in
many situations, and so should usually be avoided in mathematical writing. If you are not sure whether
the writer meant “every” or “some” when the word “any” was used, get the statement clarified. As a
corollary, of course, you should avoid using this word yourself. Here is an example: What would one
mean if she defined a purple set of integers to be one “in which any integer in the set has at least three
distinct prime divisors”? Does “any” mean “every” here (in which case the set {30,40} is not purple),
or does “any” mean “some” here (in which case the set {30,40} is purple)?

5. Incorrectly writing the symbolic form of an existential statement as Jx(A(x) — B(x)) instead of
Jz(A(x) A B(z)). For example, the symbolic form of “There exists an even number that is prime”
is 3z(E(z) A P(x)), not dz(E(x) — P(z)), where we are letting E(x) mean “x is even” and P(z) mean
“x is prime.” As a rule of thumb, existential quantifiers are usually followed by conjunctions.

6. Incorrectly writing the symbolic form of a universal statement as Vx(A(x) A B(z)) instead of
Vz(A(z) — B(z)). For example, the symbolic form of “Every odd number is prime” is Vz(O(z) — P(x)),
not Vz(O(z) A P(z)), where we are letting O(x) mean “z is odd” and P(z) mean “z is prime.” As a
rule of thumb, universal quantifiers are usually followed by implications.

7. Incorrectly putting predicates inside predicates, such as P(O(z)). For example, if P(r) means “x is
prime,” and O(z) means “z is odd,” then it would never make sense to write P(O(x)) in trying to express

2

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

a statement such as “z is an odd prime” or to write Vz P(O(z)) to say “all odd numbers are prime.” The
notation P(O(z)) would mean that the assertion that z is odd is a prime number, and clearly an assertion
isn’t any kind of number at all. Functional notation has a wonderful internal beauty and consistency
to it—the thing inside the parentheses has to be what the thing outside the parentheses applies to.

Failure to change the quantifier when negating a quantified proposition, especially in English. For ex-
ample, the negation of the statement that some cats like liver is not the statement that some cats do
not like liver; it is that no cats like liver, or that all cats dislike liver.

Using incorrect notation regarding elements and subsets of power sets and confusing the notions of “el-
ement” and “subset” when dealing with a power set. If A is a subset of S, then A is an element of the
power set of S. For example, if S = {p,q,7}, then {p,7} C S, so {p,r} € P(S). On the other hand,
{p,r} € P(S), and {p,r} ¢ S. Also, note that § ¢ S, # € P(S), and {0} ¢ P(S).

Incorrectly writing {0} to represent the empty set. One reason this cannot be the empty set is that it has
one element in it. Correct notation for the empty set is either { } or @. It is a set with no elements in it.

Incorrectly omitting parentheses in expressions involving intersection, union, and difference of sets. In
absence of a default order of operations, an expression such as AN B U C' is ambiguous, since it might
mean either (AN B)UC or AN (BUC), and these are not the same sets. It is important to put in
parentheses so that the reader knows what you mean.

Erroneously believing that all infinite sets are countable. Although it is possible to give an infinite list
of certain infinite sets (such as the set of rational numbers, using an order like 0,1,—1,%,-%,%,-%, %,
—18 31 12 23 34 41 ... itisnot possible to do this for certain larger sets, such as

the set of real numbers. There is no list of all the real numbers, as was proved in Section 1.7.

Incorrectly applying to infinite sets intuition that is valid for finite sets. For example, if a finite set A can
be put into one-to-one correspondence with a proper subset of B, then clearly |A| < |B|. This is not true
if A is infinite, however: Let A be the even natural numbers and let B be the natural numbers—then A
can be put into one-to-one correspondence with (in fact is) a proper subset of B, but A can also be put
into one-to-one correspondence with all of B (pairing 2n with n for n =0,1,2,...), so in fact |A| = | B]|.

Failing to regard a function as an object at a higher order of abstraction than an element, an ordered
pair, or a set. The notation f : A — B means that f is a process—a rule that must apply to every
element of A and in each case yield a result in B. The function is not A, it is not B, it is not an element
of A or B, nor is it the action on just one element of A. For example, if f is the function from {1, 2,3}
to the natural numbers that has the rule f(x) = x2, then f is the entire process that takes 1 to 1, 2 to 4,
and 3 to 9; it is not, for example, just the number 9 or just the pair (3,9).

Confusing the idea that a function must be well defined with the concept of one-to-oneness. A function
in general need not have the property that distinct elements of the domain be sent to distinct elements
of the range. What a function must satisfy is the requirement that two different elements of the range
cannot both be the image of the same element of the domain. Thus f(z) = z? is a function from the set
of real numbers to the set of nonnegative real numbers (it’s onto but not one-to-one), but f(z) = +/z
is not a function from the nonnegative real numbers to the real numbers.

Incorrectly calculating values of floor and ceiling functions, especially for negative values. The floor func-
tion always rounds down, and the ceiling function always rounds up. Thus, for example, |—3.2] = —4,
and [-3.2] = -3.

Incorrectly including diagonal portions in sketches of floor and ceiling functions and their variations.
These graphs almost always consist entirely of horizontal segments.

Thinking of a big-O estimate as if it were a big-Theta estimate, i.e., thinking that is provides both a
lower bound and an upper bound on the size of the function. Big-O estimates are only upper bounds. It
is not correct to say that such-and-such an algorithm is inefficient because it runs in time O(n7), since,
for instance, a linear algorithm (one with running time proportional to n) also satisfies this estimate.
What one would want to say in such a case (if it is true) is that the algorithm runs in time ©(n7).

Not understanding that the constant in a big-O estimate can be very large. For example, if an algorithm
has running time O(n?), then it might take 105°n? steps and so be impractical even for small values of n.

3

20.

Being misled by exponents when comparing dissimilar functions. For example, it might at first glance
look as if (logn)' is growing faster than n'/2, but in fact the latter is growing faster, since logn grows
so slowly compared to n. Thus (logn)'% is O(n'/?), but n'/? is not O((logn)%).

Chapter 2

Incorrectly making a = m negative. For example, —16 = 5 is 4, not —1.

Forgetting to increment counters inside loops of procedures when constructing algorithms. If the counter
is not incremented, the loop will probably run forever.

Adding when one should be multiplying, or vice versa, when analyzing running times of algorithms. If
one loop is nested inside another, then the running times are multiplied; if one loop follows another, the
times are added.

Confusing a/b and alb. The slanted slash is an operation, and the result of the operation is a number.
For example, 6/3 is the number 2. The vertical bar is the verb of a sentence. For example, 3|6 is
asserting that 3 is a divisor of 6; it is not speaking of the result of actually carrying out the division.

5. Writing a|b when one means bla. It is true that 3|6, but it is not true that 6|3.

6. Incorrectly considering 1 to be a prime number. It’s as much a matter of convention as anything else,

10.

but the number 1 is, by definition, neither prime nor composite.

Forgetting that all positive integers are divisors of 0, and therefore that gcd(a,0) = a for all positive
integers a. For example, gcd(6,0) = 6. Of course 0 is not a divisor of any nonzero number, and division
by 0 is undefined.

When carrying out the Euclidean algorithm, incorrectly using the last quotient as the final answer (the
ged), rather than the last divisor. For example, if the last step is to divide 4 into 8, giving a quotient
of 2 and remainder of 0, then the ged is the final divisor, 4, not the final quotient, 2.

Incorrectly assuming that everything that works for equality works for congruence. For example, it is
not true that just because r and s are congruent modulo m, " = a®* (mod m). Try m = 3, a = 2,
r =1, and s = 4. Also, note that even though 8 = 14 (mod 6), it would be wrong to divide both sides
by 2 and claim that 4 =7 (mod 6).

Incorrectly assuming that multiplication of matrices means entry-by-entry multiplication. Addition of
matrices is done term by term, but multiplication is more complex.

Chapter 3

. Overusing the term “by definition” in justifying statements in a proof. For example, Franklin Roosevelt

was not the President of the United States at the start of the country’s entry into World War II in
December, 1941, “by definition”; he was the President because he had been elected to that position in
1940 and had not died or left office.

Not going back to carefully check the definitions in justifying statements in a proof. For example, if one is
trying to prove something about the divisibility relation (a|b) on integers, then it is important to correctly
use the meaning of that relation (that b = ac for some integer ¢) at one or more places in the proof.

Incorrectly starting a proof by assuming what is to be proved. A common occurrence of this is an earlier
course is trying to prove trigonometric identities by starting with the identity and using algebra to reach
A = A; this is not valid. Similarly, if we are trying to prove a set identity, such as A C AU B, it would
be invalid to start with the statement A C AU B.

Invalidly assuming that a few (or even a large number of) examples of a universally quantified propo-
sition imply that the proposition is true. There is an example from number theory of an intriguing
proposition about a positive integer n that is true for every n < 1,000,000 with the sole exception
of n = 1969. A proof of the universally quantified proposition Vz P(z) consists of showing that the
property P(z) holds no matter what z is chosen from the universe of discourse.

4

10.

11.

12.

Incorrectly assuming that an arbitrary element has a particular property when all you know is that there
erists an element with the property. For example, suppose we are trying to prove the assertion that 22
always leaves a remainder of 1 when divided by 8. It would be invalid to start our proof by assuming
that x = 2n + 1 for some integer n; even though some integers have this property of being odd, it is not
true that all of them do, so we would be proving the assertion to be true only some of the time, rather
than always.

Forgetting to do the basis case in a proof by mathematical induction. The inductive step goes through
fine, for example, if we try to prove that n = n + 1 for all positive integers n, but this proposition is
obviously not true. The catch is that the basis case (when n = 1) fails, since 1 # 1+ 1.

Failing to do more than one basis case in a proof by mathematical induction in certain situations, such as
when the inductive step needs two or more previous conditions. For example, when proving statements
about the Fibonacci sequence, it usually is necessary to check the first two basis cases (say n = 1 and
n = 2), since the inductive step relies on the equation f, = fr—1 + fr—2-

Confusing a summation with the propositional function P(n) in an induction proof. For example, in try-
ing to prove 14243+ - -+n = n(n+1)/2 by induction, P(n) is this entire equation, not its left-hand side.

Not being organized when attempting to write a recursive definition. Good advice here is to think about
how you want to build up the items under discussion, step by step. The inductive rules of the definition
need to be formulated to permit each such step, and base cases are needed to get the process off the
ground. Common mistakes include not including enough base cases (for example, the recursive definition
of regular expressions in Chapter 10 requires three base cases), having conflicting cases (for example,
having one clause to handle n divisible by 2 and another clause to handle n divisible by 3, and thereby
not having a unique definition for those n divisible by 6), or having a function value at n depend on a
function value at an input larger than n (e.g., trying to set f(n) = f(3n +1) — 2).

In a proof by mathematical induction, writing P(n + 1) incorrectly. Once P(n) is properly formulated,
writing P(n + 1) can usually be done more or less mechanically by plugging n + 1 in for n. For example,
if P(n) is the statement that 24+4 +6 + --- + n = n(n + 1), then P(n + 1) is the statement that
2+446+---+n+n+1)=(n+1)(n+2).

In a proof by mathematical induction, making errors in basic algebra, especially in simplifying expres-
sions. For example, you might have to use the fact that 2" +2" = 2"+ or to simplify (n+1)>+5(n+1)2,
which is best done by factoring, not by first expanding each term. Carefully check your algebraic ma-
nipulations when you have trouble with the inductive step of such a proof.

In a recursive algorithm, failing to let the computer do the recursing. The hardest thing to overcome in
thinking about recursive algorithms is the reluctance to believe that the smaller case will be handled
correctly. For example, suppose that you want to write a recursive algorithm to compute a”, using the
facts that a?f = (a*)? and a?**! = (a*)? - a. The recursive call will handle the calculation of a¥, and so
you don’t need to worry about how the computer will repeatedly recurse, all the way down to the base
case, in order to do that. As long as your recursive step and basis case (here, a® = 1) are correct, your
algorithm is correct.

Chapter 4

. Drawing an incorrect diagram when solving counting problems. Diagrams are very useful in all of math-

ematics, and drawing a diagram is almost always a good way to start solving a problem; thus failing to
draw a diagram could also be considered a common mistake. For example, you should draw a row of
six blanks (not five) as a template for constructing words of length 6 whose symbols are chosen from a
set of five elements. Tree diagrams are also sometimes quite helpful.

Not determining whether or not order matters in solving a counting problem. For example, if we are
asked for the number of ways to write 7 as the sum of positive integers, then we need to know whether
3+ 242 and 2+ 3+ 2 are to be considered the same way or distinct ways. Read the problem very
carefully to understand what is being counted. Resolve any ambiguities ahead of time by explicitly
stating any assumptions that seem to be missing from the problem formulation.

5

10.

11.

Not determining whether or not repetitions are allowed in solving a counting problem. For example, if
we are asked for the number of ways to choose five donuts from a shop selling eight varieties of donuts,
we need to know whether we are allowed to choose more than one donut of the same variety. Read the
problem very carefully to understand what is being counted. Resolve any ambiguities ahead of time by
explicitly stating any assumptions that seem to be missing from the problem formulation.

Counting each item in the set under discussion more than once, not recognizing that an adjustment
needs to be made for double counting. For example, if we count handshakes person by person, then we
need to recognize that each shake has been counted twice, once for each of its participants.

Counting each item in the set under discussion more than once, not recognizing that the inclusion—
exclusion principle is needed. For example, if we are told that there are 26 computer science majors and
34 mathematics majors at a certain university, then there may not be 26 + 34 = 60 people majoring in
either computer science or mathematics, since these two numbers might both include the double majors.
To correctly compute the total number of people majoring in these subjects, we would need to subtract
the number of double majors from this sum.

Using the pigeonhole or generalized pigeonhole principle incorrectly. It helps to explicitly identify the
pigeons and the holes. For example, to find the minimum number of cards that must be chosen in order
to guarantee that at least six of the same suit are picked, the holes are the suits, and the cards are the
pigeons (the answer is 21).

When trying to calculate the probability that one of two events will occur, incorrectly taking the sum
of the individual probabilities. For example, the probability that a 3 will show up if a fair die is rolled
twice is not % + %, the sum of the probability that the 3 occurs on the first roll and the probability that
the 3 occurs on the second roll. Instead, we should calculate this as 1 minus the probability that the 3
fails to appear on either roll (which is % - 3 since the rolls are independent). Thus the correct answer

6
6125 — 11 2
is 36 = 36, rather than .

Assuming that all events in a probability calculation are disjoint. Doing so can lead to absurd con-
clusions, such as a probability greater than 1. (This is really a generalization of the previously listed
mistake.) For example, to calculate the probability that someone else in your graduating class of 400
students shares your birthday (assuming that all birthdays are equally likely and ignoring February 29),
you cannot argue that since each of them has a probability of 1/365 of sharing your birthday, the
probability is 399/365 (probabilities can never exceed 1, and in any case, this event is not a certainty).

Assuming that all events in a probability calculation are independent. For example, to calculate the
probability that we get two hearts when drawing two cards from a deck of cards, without replacing the
first card before drawing the second, we cannot simply note that the probability of drawing a heart is
£ on each draw (that much is true) and therefore conclude that the answer is £2 - 13 = L. Instead, we
must determine that for the second draw, the probability of drawing a heart, given that we drew a heart

on the first draw, is é—f, and therefore that the probability of drawing a heart both times is é—g . é—f = 11—7

Getting misled by the subtle assumptions inherent in probability problems. The most famous example
here is the Monty Hall Three Door Problem (see page 265 of the text). Unless one is very careful about
the assumptions one makes about the game host’s protocol, one cannot calculate the probability that
switching doors will change your chances of winning. For example, if the host (who knows where the
prize lies) were to offer you a switch if and only if you had chosen the correct door, then obviously it
would be wrong for you to switch when he makes the offer. A national debate about this problem raged
for many months when it was popularized in a magazine article.

Letting intuition interfere with reason in working with probability. For example, it might seem counter-
intuitive that among a group of 23 people, the odds favor two of them having the same birthday, but
the calculation shows this to be true.

Chapter 5

. Fuailing to note the need for the inclusion—exclusion principle. To believe that |A U B| = |A| + |B| is

always true is related to the wishful thinking that every operation distributes (or otherwise behaves in

6

10.

11.

12.

some simple, agreeable way) with respect to every other operation. This equality holds only when A
and B are disjoint.

Confusing the signs of the terms when applying the inclusion—exclusion principle. Note that the signs
alternate as we take larger and larger unions.

Not including all the terms when applying the inclusion—ezclusion principle. If there are n sets involved,
then there are nearly 2™ different terms in the equation altogether.

Giving up too easily when trying to write down a recurrence relation to model o problem situation. Ask
yourself how one can obtain an instance of the problem of size n from instances of sizes n — 1 (or
sometimes also smaller instances). Make sure to consider all the possibilities, and make sure to include
enough initial conditions. For example, if a, is the number of ways to climb n stairs if we are allowed
to take them either one at a time or three at a time, then clearly a; = 1, as = 1, and a3 = 2, and then
an = ap—1 + an—3 for n > 4, since the first step could be a single step or a triple step.

Misapplying the algorithm for solving linear homogeneous recurrence relations with constant coefficients
when there are repeated roots of the characteristic equation. One needs to multiply by powers of n in
this case. For example, if the characteristic equation is > — 6r + 9 = (r — 3)2 = 0, then the general
solution is a, = ¢1 - 3™ + ¢can - 3".

Finding a bogus particular solution of a linear nonhomogeneous recurrence relation with constant coeffi-
cients. It is always advisable to check the solutions you obtain. For example, if you had computed that
an, = 2™ was a particular solution to a, = 2a,—_1 + 2%, then plugging this in would show you that you
must have made an error, since it is not true that 2% = 2. 271 4+ 27,

Forgetting to use the inclusion—exclusion principle when counting solutions to an equation in nonnegative
integers. For example, to count the number of solutions to z +y + 2z = 58 where 0 < z < 8, 0 < y < 10,
and 0 < z < 15, one needs to count the number of solutions when the upper bound restrictions are
lifted, then subtract the number of solutions in which each such restriction is violated, then add back
the number of solutions in which two such restrictions are violated simultaneously, and finally subtract
the number of solutions in which all three restrictions are violated.

Forgetting to worry about the first few terms of a power series. When solving a recurrence relation by
using generating functions, the recurrence relation usually kicks in only for £ > 1 or 2; thus the first
term or two must be handled explicitly.

Failing to change the variable in a power series when necessary. For example, if a power series has z*~1

and you need it to be ¥, you can replace k by k + 1 throughout the summation (including the limits)
o o0 o0
and simplify algebraically: 3~ kz* 1= Y (k+1)z*+tD-1 = S (k+1) k.
k=1 k+1=1 k=0
Setting up the wrong model when solving counting problems with generating functions. You need to
carefully work out what each factor of the generating function needs to be, worrying about how much
repetition is allowed and whether order matters. See, for instance, Example 12 in Section 5.4 of the
text, where the proper generating function depends on whether or not we take order into account.

Making algebraic errors in working with generating functions. When expanding a generating function to
find the coefficient of 2™, one must of course use the distributive law. The algebraic manipulations can
get messy, as the number of terms can grow rapidly. One solution to this problem is to use a computer al-
gebra package such as maple to do the algebra. For example, to multiply out (14+z+2?)(1+22+z*+x9),
you end up with 12 terms, which then simplify to 1 + 2 + 222 + 23 + 2z* + 2° + 226 + 27 + 28.

Not knowing how to use partial fraction decomposition when dealing with generating functions, or mak-
ing errors in the procedure, such as forgetting to include terms of the form (xz — a)* for all k such that
1 < k < n when the factor (x — a)™ appears in the denominator of the fraction to be expanded. This
subject is traditionally taught in calculus courses, even though it has little to do with calculus (other
than the fact that it is used as a technique of integration). Therefore those students who have not yet
studied enough calculus (partial fractions are usually covered in the second semester), or who have taken
a course in which this topic is not covered, may need to find a source of instruction for this useful tool
(or rely on a computer algebra package such as maple to perform the task). Any traditional calculus
text will probably have a section from which this material can be learned or reviewed.

7

Chapter 6

. Failing to draw o picture when dealing with relations. The digraph of a relation on a set gives an ex-
cellent way to visualize what is going on. This common mistake can be generalized: Failing to draw a
picture when dealing with any mathematical object. See the list of general problem-solving strategies
given in the introduction to this section of the Guide.

. Forgetting to think about pairs (a,b) and (b,a) when checking for transitivity of a relation or forming
the transitive closure. In this case, one needs to have (or add) the loops (a,a) and (b,b) as well.

. Failing to recognize that symmetry or transitivity often hold vacuously. For example, the relation
{(1,2),(1,3)} is transitive, because it is vacuously true that whenever (a,b) and (b,c) are in the re-
lation, so is (a, c)—i.e., there are no pairs making the hypothesis of this implication true.

. Forgetting that order of operations matters when forming closures. The symmetric, transitive closure is
not the same as the transitive, symmetric closure, for example.

. Incorrectly assuming that every relation has desired properties, such as symmetry or transitivity. It is
certainly not true that every relation is a total order or an equivalence relation. Many partial orders are
not total, so elements can be incomparable (for example, it is true neither that {1,2} C {1,3} nor that
{1,3} € {1,2}). If T know you and you know Mary, that doesn’t mean that I necessarily know Mary. If
f(z) is O(g(x)), that doesn’t mean that g(z) is O(f(z))-

. Invalidly applying to infinite partially ordered sets intuition that is valid for finite posets. Hasse diagrams
can be misleading for infinite posets (or they may not exist at all), so be wary about thinking of all
posets in finite diagrammatic terms. For example, in the poset consisting of the positive real numbers
under the < relation, there is no immediate successor to any element, so there would be no edges in the
Hasse diagram if we were to try to draw one.

. Forgetting to eliminate all the implied edges when drawing a Hasse diagram. If there is an edge from
a to b and one from b to ¢, where a lies above b and b lies above ¢, then you must not show an edge
between a and c.

. Forgetting that certain pairs in a relation are implied in a Hasse diagram. If there is an edge from a to
b and one from b to ¢, where a lies above b and b lies above ¢, then c is related to a even though there
is no edge between a and c.

. Incorrectly supposing that all partial orders have least or greatest elements, or that least upper bounds
or greatest lower bounds always exist. For example, in the poset ({a,b,c,d, e}, {(a,a), (b,b), (c,¢c),(d,d),
(e,€), (a,b), (c,b), (c,d), (e,d)}) there is no least element, no greatest element, and no least upper bound
for {a,e}. Similarly, in the poset consisting of the integers under < together with two extra elements
z and y that are defined to be less than all the integers and unrelated to each other, there is no least
upper bound for {z,y}, even though every integer is an upper bound.

Chapter 7

. Getting confused by some of the terminology in graph theory, such as the distinction between path and
simple path. Here is one place where memorization is required. Making your own glossary on file cards
or in a computer file may be helpful.

. QOvercounting the edges in a graph by forgetting to divide by 2 when adding the degrees of the vertices.
Each edge is counted twice, once for each end.

. Being unsure about what kind of graph model to use. If the relationship between objects in the situation
you are trying to model is symmetric, then an undirected graph is probably appropriate; otherwise a
directed graph usually works best. For example, highways joining major cities can be traversed in ei-
ther direction, so an undirected graph is appropriate for this model. The predator-prey relation among
species of animals is definitely not symmetric, so a digraph seems right here.

. Incorrectly thinking that if two graphs share many of the same attributes (invariants like number of ver-
tices, number of edges, etc.) then they must be isomorphic. See Section 7.3 for some counterexamples.

8

10.

11.

12.

. Incorrectly interchanging the definitions of Hamilton and Euler paths and circuits. Remember that there

is a simple test for Euler paths and circuits, but no one knows of any simple tests for Hamilton paths
and circuits.

. Ignoring the fact that having an Euler [Hamilton] circuit implies the existence of an Euler [Hamilton]

path. Look carefully at the definitions.

. Confusing theorems in graph theory with their converses. For example, if in a connected simple graph

with n > 3 vertices each vertex has degree at least n/2, then the graph has a Hamilton circuit; but the
converse or inverse of this statement is not true (there are plenty of graphs having Hamilton circuits in
which the vertex degrees are small). Here is another example: If a connected simple graph is planar,
then it must satisfy e < 3v—6, where e is the number of edges and v is the number of vertices. Therefore
(by the contrapositive), we know that if a graph has too many edges (e > 3v — 6), then it cannot be
planar. What we cannot conclude is the converse—it is not a theorem that if e < 3v — 6, then the graph
has to be planar.

. Using the nonezistent word “vertice” instead of the correct word “vertex” to talk about just one of the

dots in a graph. Similarly, there is no such thing as a “matrice.”

. Mistakenly thinking that a graph is nonplanar just because it is drawn one way with two edges crossing.

If it is possible to redraw the graph without edges crossing, then the graph is planar. For example, K4
is planar, even though drawing it as the vertices of a square with straight line segments representing
the edges causes a crossing in the middle of the picture. (Redraw it as the vertices of a triangle with
one more vertex in the interior.)

Invalidly concluding that once one has found a coloring of a graph with n colors, its chromatic number
has to be n. In fact, all we know in that case is that its chromatic number is at most n. It may be
possible to find another coloring with fewer than n colors. For example, one could color C4y with four
colors (a different color for each vertex), but its chromatic number is in fact 2.

Mistakenly believing that greedy algorithms always produce the optimal solution to a problem. It often
happens that the simple-minded greedy approach does find the best solution (e.g., in looking for min-
imum spanning trees in Section 8.6), but often the greedy approach fails (e.g., in finding a coloring of a
graph using as few colors as possible).

Failing to recognize that writing down a procedure doesn’t guarantee that it does what you want it to
do. For example, one cannot write down a greedy algorithm to color a graph and then claim without
justification that this procedure finds the coloring with the fewest possible colors. In fact, it won’t, as
fairly simple counterexamples can show.

Chapter 8

. Incorrectly setting up a decision tree for a problem such as identifying counterfeit coins by weighing

them, and thereby drawing the wrong conclusions. Each possible situation must correspond to a path
from the root of the tree to a leaf.

. Not realizing what type of tree is needed for a particular mathematical model. Issues to consider are

whether there should be a root (a starting point for some process), whether the children of a vertex are
ordered, and whether each child should be classified as a right child or a left child.

. Incorrectly omitting parentheses in expressions written in infiz notation. In absence of a default order

of operations, an expression such as AN BU C is ambiguous, since it might mean either (AN B) U C or
AN(BUC), and these are not the same sets. With prefix or postfix notation, no such ambiguities arise.

. Forgetting that when doing an inorder traversal of an ordered rooted tree that is not binary, the root of

each subtree comes after the first subtree but before all the other subtrees. For a binary tree, inorder
traversal is rather obvious—left, root, right. When the tree isn’t binary, we can still define inorder
traversals, but the definition isn’t as natural.

. When applying Prim’s algorithm for finding minimum spanning trees, forgetting that edges become eli-

gible for inclusion in the tree gradually (as opposed to Kruskal’s algorithm, in which they are all eligible

9

from the start). If there is a low-cost edge that does not currently have any endpoint in the tree con-
structed so far, then it cannot yet be added to the tree. When one of its endpoints finally becomes part
of the tree, it suddenly becomes eligible and can then be added to the tree if it is the lowest cost edge
currently eligible. It is easy to overlook such edges when performing the algorithm.

Chapter 9

. Being off by one level of abstraction when thinking about Boolean functions. A Boolean function with n
variables can be represented by a table with 2" rows; therefore there are 22" different Boolean functions
with n variables.

. Putting inverters in the wrong place when building combinational circuits. If we want to invert the value
of the output of a gate, the inverter needs to go after the gate.

. Forgetting to apply De Morgan’s laws correctly when evaluating the output of a combinational circuit.
The output of a circuit is a certain Boolean expression of the input variables. When simplifying this
expression, it is important to remember than Zy =Z+7y and z +y = T 7.

. Not finding the largest possible blocks when looking for minimum Boolean expressions using Karnaugh
maps. Since there is no known efficient algorithm for solving this problem in general (with more than just
a few variables), it should not be surprising that this procedure seems to involve some ugly “guessing”
to it.

. Not finding the best cover when looking for minimum Boolean expressions using the Quine—McCluskey
method. Since there is no known efficient algorithm for solving this problem in general (with more than
just a few variables), it should not be surprising that this procedure seems to involve some ugly “guess-
ing” to it. It might be very hard to make sure that a covering we have found with, say, five minterms
is really the best possible—that there isn’t another covering with four minterms.

Chapter 10

. Incorrectly constructing grammars to generate a desired language. There is no algorithm for doing this
(this statement is a theorem in the theory of computation, similar to Turing’s theorem on the unsolv-
ability of the halting problem). Constructing grammars is like writing computer programs, and all the
advice given in a programming course (such as thinking from the top down in a structured way) applies.

. Incorrectly constructing finite-state machines (including Turing machines) to perform a desired task.
There is no algorithm for doing this (this statement is a theorem in the theory of computation, similar
to Turing’s theorem on the unsolvability of the halting problem). Constructing machines is like writing
computer programs, and all the advice given in a programming course (such as thinking from the top
down in a structured way) applies.

. Not including all the strings that are accepted by a given finite-state automaton. Sometimes students
will follow some paths that the machine can take to reach an accepting state and forget to consider
others. This will lead to a claim that the language recognized by this automaton is a proper subset of
what it really is. Make sure to “play computer” and follow all the branches.

. Forgetting to have one arrow leaving each state for each input symbol when constructing deterministic
finite-state automata. You usually want to have a “graveyard” state to which the machine goes when
it is clear that the input is not acceptable. There needs to be a loop from the graveyard state to itself
for each alphabet symbol.

. Failing to realize that a nondeterministic finite-state automaton can accept a string even when some
computation paths on a certain input drive the machine to a nonaccepting state. As long as at least one
path leads to an accepting state, the input string is accepted.

. Failing to keep track of all the possible states in which a nondeterministic finite-state automaton can
enter at each step, when constructing the corresponding deterministic automaton. Make good use of all
your fingers in analyzing what can happen!

10

7. Failing to check that a machine or a grammar or a reqular expression presented as the solution of some
problem actually works. This is similar to debugging a computer program. Many test cases should be
tried, so that you can be confident that your machine or grammar or expression really works.

8. When constructing Turing machines, forgetting to include all the cases. If the machine can ever reach a
certain state and be viewing a particular input symbol, then a transition is needed to handle that case.
Using top-down programming methodology is advisable to make sure your machines do what you want
them to do.

9. Getting so bogged down in the details of constructing Turing machines that you lose sight of the main
points of the theory. The main point is given in the Church—-Turing thesis: that every conceivable
computation can be performed by any reasonable computational model, be it a Turing machine, your
favorite high-level programming language, or yourself working with pencil and paper. And on that note
of keeping the “big picture” in mind, we’ll bring this list of common mistakes to a close.

11

