Solution of FINAL EXAM

Instructions:

- (1) Show your work and explain **every** step.
- (2) You may not be given credit at all for incomplete solutions.
- (3) Answers with no explanations will not be accepted.
- (4) Do not write the numbers in the decimal form (keep them as fractions).
- (5) If you use a method different than the method specified in the question, you will get no points.
- (6) Do NOT use calculators.
- (7) Do NOT talk to your neighbor or look at his/her paper.
- (8) Use only notation used in class.
- (9) **Time:** 2 hours.

Matrix	Its reduced row echelon form
$ \left[\begin{array}{ccccc} 1 & 1 & 1 & -1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & -2 \end{array}\right] $	$\left[\begin{array}{cccc} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{array}\right]$
$ \left[\begin{array}{ccccc} 1 & 1 & -1 & 2 \\ 2 & 2 & -3 & 1 \\ -1 & -1 & 0 & -5 \end{array} \right] $	$\left[\begin{array}{cccc} 1 & 1 & 0 & 5 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{array}\right]$
$ \begin{bmatrix} 1 & 1 & -1 & 2 & 0 \\ 2 & 2 & -3 & 1 & 0 \\ -1 & -1 & 0 & -5 & 0 \end{bmatrix} $	$ \begin{bmatrix} 1 & 1 & 0 & 5 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} $

- (1) (8 points)
 - (a) Give a counterexample to prove the following statement is false: If an $n \times n$ matrix A is row equivalent to I_n , then A and I_n have the same eigenvalues.

Solution: Let $A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$. Then A is row equivalent to I_2 (divide the first row by 2 and then the second by 2 and you'll get I_2). But, the eigenvalues of A are 2 with algebraic multiplicity 2 and the eigenvalues of I_2 are 1 with algebraic multiplicity 2. By the way, this one was done in class.

- (b) Prove that every skew-Hermitian matrix is normal. Solution: Let A be skew-Hermitian, then $A^H = -A$. Thus, $AA^H = A(-A) = -A^2$, and $A^HA = (-A)A = -A^2$. Therefore, $AA^H = A^HA$, which means it's normal. By the way, this one was done in class.
- (c) Let S be an $n \times n$ skew-symmetric matrix and n is odd, prove that $\det(S) = 0$. Solution: We know $S^T = -S$. Thus, $\det(S^T) = \det(-S) = (-1)^n \det(S) = -\det(S)$. But, $\det(S^T) = \det(S)$. Therefore, $\det(S) = -\det(S)$. Thus, $2\det(S) = 0$, which implies $\det(S) = 0$. By the way, this one was done in class.
- (d) Let S be an $n \times n$ real skew-symmetric matrix, and let (λ, x) be an eigenpair of S. Prove that if x is real, then S is singular. Solution: $Sx = \lambda x$. Now recall that we proved that the eigenvalues of S are of the form bi, where b is a real number. But, since S is real and x is real, then Sx is real. On the other hand, $\lambda x = bix$, which is imaginary. This forces b to be zero, which means $\lambda = 0$, which implies S is singular (we said a matrix is singular iff zero is an eigenvalue of the matrix).

- (2) (4 points) Let A be a 4×4 matrix with determinant of 30 and with eigenvalues of $\lambda_1 = 2$, $\lambda_2 = 3$, $\lambda_3 = 1$, and λ_4 .
 - (a) What is the value of λ_4 ?

 Solution: We said in class that the determinant of A is equal to the product of its eigenvalues. Thus, $30 = (2)(3)(1)\lambda_4$. Therefore, $\lambda_4 = 5$.
 - (b) Find tr(A). Solution: We said in class that the trace of a matrix is equal to the sum of its eigenvalues. Therefore, tr(A) = 2 + 3 + 1 + 5 = 11.

(3) (4 points) Let B be an $n \times n$ matrix similar to the $n \times n$ matrix A. I.e. there exists an invertible $n \times n$ matrix P such that $P^{-1}AP = B$. Let (λ_1, x_1) , $(\lambda_2, x_2), \dots, (\lambda_n, x_n)$ be eigenpairs of A, where λ_k , $k = 1, \dots, n$, are all the eigenvalues of A. Find corresponding eigenpairs of B (write them in terms of the eigenvalues of A and the eigenvectors of A).

Solution: $A = PBP^{-1}$. Therefore, $Ax_k = \lambda_k x_k$ iff $PBP^{-1}x_k = \lambda_k x_k$ iff $BP^{-1}x_k = \lambda_k P^{-1}x_k$ iff $(\lambda_k, P^{-1}x_k)$ is an eigenpair of B. Thus, the eigenpairs of B are $(\lambda_1, P^{-1}x_1)$, $(\lambda_2, P^{-1}x_2)$, \cdots , $(\lambda_n, P^{-1}x_n)$. By the way this was done in class.

(4) (6 points) Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$. Find A^{-1} by using Gauss-Jordan elimi-

nation, and also find det(A) from the Gauss-Jordan elimination steps you did.

Solution: $A^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$. The elementary row operations you have to do to get this are: $r_3 - r_1 \longrightarrow r_3$, $r_1 - r_2 \longrightarrow r_1$, $-r_3 \longrightarrow r_3$,

 $r_2 - r_3 \longrightarrow r_2$. Thus, $(-1) \det(A) = 1$. Therefore, $\det(A) = -1$.

(5) (6 points) Let
$$A = \begin{bmatrix} 3 & 5 & 0 \\ 2 & 0 & 8 \\ 4 & 7 & 6 \end{bmatrix}$$
. Find $\det(A)$ by using cofactors. Also, find
$$\det(A^9A^T)^{-1}.$$
 Solution: $\det(A) = 3(0 - (8)(7)) - 5((2)(6) - (4)(8)) = -68.$
$$\det(A^9A^T)^{-1} = ((\det(A))^9 \cdot \det(A))^{-1} = (\det(A))^{-10} = (-68)^{-10}.$$

(6) (3 points) Determine if the following set S is a basis for \mathbb{R}^3 . Explain.

$$S = \left\{ v_1 = \begin{bmatrix} 3 \\ 2 \\ 4 \end{bmatrix}, v_2 = \begin{bmatrix} 5 \\ 0 \\ 7 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 8 \\ 6 \end{bmatrix} \right\}.$$

Hint: see the previous question.

Solution: When you put these vectors in a matrix, you get the matrix A in the previous question whose determinant is not zero, which means the given vectors are linearly independent. Since we have 3 vectors which is the same as the dimension of \mathbb{R}^3 , we conclude that they form a basis for \mathbb{R}^3 .

(7) (6 points) Decide if the following set S span \mathbb{R}^3 . If the given set does not span \mathbb{R}^3 , give an example of a vector in \mathbb{R}^3 that does not belong to the span of the given set. Explain.

$$S = \left\{ v_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, v_4 = \begin{bmatrix} -1 \\ 0 \\ -2 \end{bmatrix} \right\}.$$

Solution: From Question 4, we know the matrix that consists of the first three vectors is nonsingular. Therefore the first three vectors are linearly independent, and hence, they form a basis for \mathbb{R}^3 , which means they span \mathbb{R}^3 .

(8) (4 points) Let

$$S = \left\{ v_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, v_4 = \begin{bmatrix} -1 \\ 0 \\ -2 \end{bmatrix} \right\}.$$

Find a basis from S for span S. Explain.

Solution: From the previous question, the first three vectors form a basis for Span S.

(9) (5 points) Let $v_1 = (7,3)$ and $v_2 = (5,2)$. Find the transition matrix for the change of basis from $[e_1, e_2]$ to $[v_1, v_2]$. Also, find the coordinates of v = (-4,6) with respect to $[v_1, v_2]$.

Solution: $A = \begin{bmatrix} 7 & 5 \\ 3 & 2 \end{bmatrix}$ is the transition matrix from $[v_1, v_2]$ to $[e_1, e_2]$.

Therefore, $A^{-1} = \begin{bmatrix} -2 & 5 \\ 3 & -7 \end{bmatrix}$ is the required transition matrix. The coordinates of v are $A^{-1}v = (38, -54)$.

(10) (8 points) Let
$$A = \begin{bmatrix} 1 & 1 & -1 & 2 \\ 2 & 2 & -3 & 1 \\ -1 & -1 & 0 & -5 \end{bmatrix}$$
. Find a basis for the nullspace of

A, a basis for the row space of A that does not include rows from A, and the rank of A. Indicate which one is which.

Solution: The first two rows of the reduced row echelon form of the matrix form a basis for the row space of A. Hence, the rank of A is 2. Now to find a basis for the nullspace, solve the system corresponding to the reduced row echelon form to get: $x_1 + x_2 + 5x_4 = 0$ and $x_3 + 3x_4 = 0$. Therefore, x_2 and x_4 are arbitrary and $x_3 = -3x_4$, $x_1 = -x_2 - 5x_4$. Therefore, $\{(-1, 1, 0, 0), (-5, 0, -3, 1)\}$ is a basis for the nullspace.

- (11) (4 points) Determine if each of the following sets W is a subspace of the given vector space V. Explain.
 - (a) $V = M_{nn}$. W is the set of all $n \times n$ skew-symmetric matrices. Solution: Let A and B be in W. Then $(A+B)^T = A^T + B^T = -A - B = -(A+B)$. Thus, $(A+B) \in W$. Now, let α be a scalar and A be in W. Then, $(\alpha A)^T = \alpha A^T = -\alpha A$. Thus, αA is in W. Hence, W is a subspace. By the way, this was done in class.

(b) $V = P_2$. W is the set of all polynomials of the form $a_0 + a_1t + a_2t^2$, where a_0 is an integer.

Solution: Not a subspace, because for example if you take p(t) = 3, then $p(t) \in W$. Now take the scalar to be $\alpha = \frac{1}{2}$. Then $\alpha p(t) \notin W$. So, not closed under scalar multiplication.

- (12) (5 points) Determine if the following are linear transformations. Explain.
 - (a) $L: P_2 \longrightarrow P_2, L(at^2 + bt + c) = (2 a)t^2 + (b c)t.$ Solution: $L(0) = 2t^2 \neq 0$. So, not.
 - (b) $L: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, L(x,y) = (x-y,y-x).$

Solution: It be easily verified that L satisfies the two properties. Hence, it's linear. Alternatively, you can say L(x,y) = A(x,y), where $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$. We stated in class that any function of this form is a linear transformation.

(13) (6 points) Let $A = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}$. Find the eigenvalues of A, their geometric multiplicities (do NOT give me the algebraic multiplicities), and corresponding eigenvectors.

Solution: The characteristic equation is: $\lambda^2 - 4\lambda + 4 = 0$. Thus, the eigenvalues are 2, 2. Now solve the system

$$A = \left[\begin{array}{cc} 3-2 & -1 \\ 1 & 1-2 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = 0,$$

to get $x_1 - x_2 = 0$, which means $x_1 = x_2$. Thus, (1, 1) is the only eigenvector, which implies the geometric multiplicity is 1.

(14) (5 points) Let $f(\lambda) = (1 - \lambda)(\lambda^2 + 10\lambda + 25)$. Find the eigenvalues of A and their algebraic multiplicities. (Do NOT give me the geometric multiplicities.) Also, find $\rho(A)$.

Solution: The eigenvalues are the roots of the characterestic polynomial which are 1, -5, -5. Thus, the algebraic multiplicity of 1 is 1 and of -5 is 2. Now $\rho(A)$ is the maxmimum magnitude of the eigenvalues. Since we have only real eigenvalues here, then the magnitude is just the absolute value. Thus, $\rho(A) = 5$.

- (15) (3 points) Let B be a 4×4 matrix. If the eigenvalues of B are the following:
 - -4 with algebraic multiplicity 1 and a geometric multiplicity 1.
 - -7 with algebraic multiplicity 1 and a geometric multiplicity 1.
 - -9 with algebraic multiplicity 2 and a geometric multiplicity 1. Is B diagonalizable? Explain.

Solution: We said in class that A is diagonalizable iff it has n linearly independent eigenvectors. In this case, n=4. Now, the number of linearly independent eigenvectors is the sum of the geometric multiplicities which is 1+1+1=3. Thus, we have only 3 linearly independent eigenvectors (less than 4). So, not.

(16) (4 points) Let $A = \begin{bmatrix} 3 & -1 \\ 2 & -5 \end{bmatrix}$. Find $||A||_1$ and $||A||_{\infty}$. Make it clear which one is which.

Solution: Take the absolute value of each element of A. Then find the sum of each row to get the sums are 4 and 7. Take the maximum which is 7. This is $||A||_{\infty}$. Now find the sum of each column (after taking the absolute value of each element) to get the sums are 5 and 6. Take the maximum of these which is 6. This is $||A||_1$.

(17) (a) (6 points) Transform the following set S to an orthonormal set using Gram-Schmidt process

$$S = \left\{ v_1 = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}, \ v_2 = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} \right\}.$$

(b) Find a nonzero vector in \mathbb{R}^3 that is orthogonal to v_1 and v_2 , where v_1 and v_2 are as above.

(18) (8 points)

(a) Let $L: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, $L(x_1, x_2, x_3) = (2x_1 - x_3, x_2 - x_3 + 4x_1)$. Find the matrix of L.

Solution: $A = \begin{bmatrix} 2 & 0 & -1 \\ 4 & 1 & -1 \end{bmatrix}$. (b) Let $L: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, $L(x_1, x_2, x_3) = (0, 2x_1 - x_2, 0)$. Find a basis for ker L.

Solution: Solve L(x) = 0 to get $2x_1 = x_2$. Thus, x_3 is arbitrary. Therefore, the kernel consists of all vectors of the form $(x_1, 2x_1, x_3)$. Hence, $\{(1,2,0),(0,0,1)\}\$ is a basis for ker L.

(c) Let $L: P_2 \longrightarrow P_3$, $L(at^2 + bt + c) = (a - c)t^3 + b$. Find a basis for range

Solution: From the formula, $\{t^3, 1\}$ is a basis.

(d) Let $L: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, be the linear transformation such that L(v) is the rotation of v clockwise (be careful here; it's clockwise not counterclockwise) by θ . Find the matrix of L.

Solution: This was done in class. The matrix is $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$

- (19) (5 points) Determine if the following are true or false. If the item is true, write "TRUE" to the left of the item; if it's false, write "FALSE" to the left of the item:
 - (a) If a matrix P diagonalizes a matrix A, then P is unique. Solution: False. This was done in class.
 - (b) Every unitary matrix is normal.
 Solution: True. This was done in class.
 - (c) If L is a function from a vectorspace V into a vectorspace W and L(0) = 0, then L is a linear transformation.

Solution: False. This was mentioned in class.

- (d) If $\lambda = 0$ is an eigenvalue of an $n \times n$ matrix A, then A is singular. Solution: True. This was mentioned in class.
- (e) Let A be an $n \times n$ matrix and let $f(\lambda) = \det(A \lambda I)$ and $g(\lambda) = \det(\lambda I A)$, then $g(\lambda) = -f(\lambda)$.

Solution: False. This was done in class. Note that $g(\lambda) = (-1)^n f(\lambda)$.

- (f) If A is an $n \times n$ matrix and B is the matrix obtained from A by adding a multiple of one row of A to another, then $\det(B) = \det(A)$.

 Solution: TRue. This was mentioned in class.
- (g) If V is a vector space of dimension n, then it's possible to have n+1 orthogonal vectors in V.

Solution: False. This was mentioned in class.

(h) The algebraic multiplicity of an eigenvalue is less than or equal to its geometric multiplicity.

Solution: False. This was mentioned in class. The opposite is what's true.

(i) The main diagonal of a Hermitian matrix is real.

Solution: True. This was mentioned in class.

(j) If a homogeneous system of linear equations has a nontrivial solution, then it has infinitely many solutions.

Solution: True. This was mentioned in class.