Assignment 3

Note that one of the questions is not solved yet and I still have to double check those that are solved.

(1) Let A be the matrix given below. Find a basis for the nullspace of A and the nullity of A (i.e. find a basis for the solution space of Ax = 0 and also find its dimension). Also, find two bases for the row space of A (one of them should be formed from rows from A and the other is not) and two bases for the column space of A (one of them should be formed from columns from A and the other is not). Find also the row rank of A, the column rank of A, and rank A.

$$A = \left[\begin{array}{ccccc} 1 & 2 & 2 & -1 & 1 \\ 0 & 2 & 2 & -2 & -1 \\ 2 & 6 & 2 & -4 & 1 \\ 1 & 4 & 0 & -3 & 0 \end{array} \right].$$

Solution: The part related to the solution space Ax = 0 (nullspace of A), a basis for that, and the dimension of that (the nullity of A) was done as an example in class.

Now find the reduced row echelon form of A, which is

$$B = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & -1 & -1/2 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

The nonzero rows of B are basis for the row space of A. I.e.

$${[1\ 0\ 0\ 1\ 2],\ [0\ 1\ 0\ -1\ -1/2],\ [0\ 0\ 1\ 0\ 0]}$$

is basis for the row space of A that does not contain rows from A. Thus, the row rank of A is 3, and hence, rank A = 3.

Take the columns (make them as column vectors) of A corresponding to the columns of B with the leading 1's (these are columns 1, 2, and 3), which

are

$$\left\{ \begin{bmatrix} 1\\0\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\2\\6\\4 \end{bmatrix}, \begin{bmatrix} 2\\2\\2\\0 \end{bmatrix} \right\}.$$

These vectors form a basis for the columnspace of A that is formed from columns from A. Thus, the column rank of A is 3.

Now find the reduced row echelon form of A^T , which is

$$C = \left[\begin{array}{cccc} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right].$$

The nonzero rows of C (made as columns) are basis for the column space of A. I.e.

$$\left\{ \begin{bmatrix} 1\\0\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \right\}$$

are basis for the column space of A which does not contain columns from A.

Take the columns (make them as row vectors) of A^T corresponding to the columns of C with the leading 1's (these are columns 1, 2, and 3), which are

$$\{[1\ 2\ 2\ -1\ 1],\ [0\ 2\ 2\ -2\ -1],\ [2\ 6\ 2\ -4\ 1]\}.$$

These vectors form a basis for the rowspace of A that is formed from rows of A.

- (2) Let $v_1 = (2, -1, 1)$ and $v_2 = (-3, 1, 7)$.
 - (a) Find a nonzero vector in \mathbb{R}^3 that is orthogonal to v_1 and v_2 . Call this vector v_3 .

Solution: Want $v_3 = (a, b, c)$ to satisfy $v_3 \cdot v_1 = 0$ and $v_3 \cdot v_2 = 0$. Thus, we get a system of two equations: 2a - b + c = 0 and -3a + b + 7c = 0. Now solve the system to get: (8s, 17s, s) is a solution, where s is any real

number. We don't want v_3 to be zero. Thus, take s to be any nonzero real number; e.g. take s = 1, to get $v_3 = (8, 17, 1)$.

(b) Now let $S = \{v_1, v_2, v_3\}$. Then make S orthonormal and then write the vector v = (-6, 7, 8) as a linear combination of the *new* vectors in S. Solution: To make them orthonormal, divide each vector by its norm. Note that $||v_1|| = \sqrt{6}$, $||v_2|| = \sqrt{59}$, and $||v_3|| = \sqrt{354}$. Call the new vectors w_1 , w_2 and w_3 respectively.

Now we need to find c_1 , c_2 and c_3 such that $v = c_1 w_1 + c_2 w_2 + c_3 w_3$. Do the procedure we did in class to get $c_i = v \cdot w_i$, i = 1, 2, 3. Thus, $c_1 = -11/\sqrt{6}$, $c_2 = 81/\sqrt{59}$, and $c_3 = 79/\sqrt{354}$.

- (c) Is it possible to have an orthonormal set of 7 vectors in ℝ⁶? Explain. Solution: No. because every orthonormal set is linearly independent. So, if we have an orthonormal set of 7 vectors in ℝ⁶, then we'll have a linearly independent set of 7 vectors in ℝ⁶. But, that can't be because dim ℝ⁶ = 6, which means any linearly independent set in ℝ⁶ can have at most 6 linearly independent vectors.
- (3) Question 2 Section 6.8 (of the text).
- (4) Tranform the following basis S for \mathbb{R}^3 to an orthonormal basis using Gram-Schmidt process

$$S = \left\{ u_1 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}, \ u_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \ u_3 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\}.$$

Solution: Let
$$v_1 = u_1$$
, $v_2 = u_2 - \frac{u_2 \cdot v_1}{v_1 \cdot v_1} v_1 = \begin{bmatrix} 4/3 \\ -1/3 \\ 5/3 \end{bmatrix}$, and $v_3 = u_3 - \frac{u_3 \cdot v_1}{v_3} v_3 = \frac{u_3 \cdot v_3}{v_3} v_3 = \frac{u_3 \cdot v_3}{v_$

$$\frac{u_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{u_3 \cdot v_2}{v_2 \cdot v_2} v_2 = \begin{bmatrix} -1/7 \\ -3/14 \\ 1/14 \end{bmatrix}.$$

Now let $w_i = \frac{v_i}{\|v_i\|}$, i = 1, 2, 3. Then $\{w_1, w_2, w_3\}$ is an orthonormal basis for \mathbb{R}^3 .