Handout 7 (C++ Numeric Data Types, Mathematical Built-in Functions, and Precedence Rules of Mathematical Operations)

C++ Numeric Data Types:

1. Integral data types: unsigned short (same as unsigned short int), short (same as short int), unsigned (same as unsigned int), int, unsigned long (same as unsigned long int), long (same as long int), char, unsigned char, bool.
2. Real (floating-point) data types: float, double, long double.

NOTE: unsigned is used only for integer data types. It is not used for real (floating-point) data types.

Remarks:

1. I'll use real instead of floating-point to avoid confusion between float and floating-point, because floating-point stands for float, double, and long double.

2. The difference between real and integer types is the following: in real types (i.e. float, double, long double), a number is allowed to have a fractional part, while in integer types (e.g. short, int, long) it is not. Thus, a number of an integer type cannot contain a decimal point.

Precedence Rules for Mathematical Operations:

1. Highest: unary + unary -

2. Then: / % * (evaluated left to right)

3. Then: + - (evaluated left to right)

Remarks:

1. If parentheses are present, then subexpressions in parentheses should be evaluated first (those subexpressions are evaluated according to the precedence rules mentioned above). Then after you get rid of the parentheses, follow the precedence rules to finish evaluating your expression.

2. If integer values are mixed with real values in an expression, then the integer values are temporarily coerced to real (floating-point) values, and the result is a real value.

Examples:

1. 6.0-7.0/(5.0-3.0)=2.5

2. 6-7/(5-3)=3

3. If a, b, and c are of type float, and if a=7.0, b=2.0, and c=a/b, then c=3.5

4. If a, b, and c are of type int, and if a=7, b=2, and c=a/b, then c=3

5. If a and c are of type float and b is of type int and if a=7.0, b=2, and c=a/b, then c=3.5

Question: Suppose Var1 and Var2 are variables declared to be of type int and Var3 and Var4 are variables declared to be of type float, what will be the values of Var1, Var2, Var3, and Var4, when the following 4 statements are executed?

Var1=(2/3)*2; Var2=(2.0/3)*2; Var3=(2/3)*2; Var4=(2.0/3)*2;

Answer: Var1 will have the value of 0, Var2 will have 1, Var3 will have 0, Var4 will have the value 1.33333. So, be careful about how you enter your expressions.

Remember: If you assign a real value to an integer variable (i.e. int, long, short, etc), then the fractional part is thrown away. For example, if Var1 is a variable of type int, then after executing the statement:

Var1=3.57;

Var1 will have the value of 3

Increment and Decrement Operators:

See the lecture for the 4 types we discussed.

Example: What is the output of the following C++ program?

#include <iostream>

using namespace std;

int main()

{

int a;

a=13;

cout << a++ << endl;

cout << ++a << endl;

cout << a-- << endl;

cout << --a << endl;

return 0;

}

Type Conversion:

1. float(expression) changes expression to real type.

2. int(expression) changes expression to integer type.

Notice that if expression in number 2 has a fractional part, then that fractional part is thrown away no matter whether it is less than 0.5 or greater than or equal to 0.5.

Example:

Let A be of type int and let B be of type float and let B=2.3 and A=int(1.0+2.0*B). Then A=5

Remarks:

1. The data type double stands for double precision. Sometimes using double instead of float yields to more precision.

2. The integer data type that contains the widest range of integer values is long (which is the same as long int).

3. The real data type that contains the widest range of real values (floating-point values) is long double.

4. If you want to write a number like 2.7 * 108 declared to be of type real (i.e. float, double, long double), you write it as 2.7E8 or 2.7e8. If you want to write a number like 2.7 * 10-8 declared to be of type real (i.e. float, double, long double) you write it as 2.7E-8 or 2.7e-8.

5. If you want to write a number like 27*108 declared to be of type integer (int, long, etc) or real (float, double, etc), you write it as 27E8 or 27e8.

6. If you begin a nonzero number declared to be of type integer (int, long, short, unsigned int, etc) with 0, then the number is taken to be an octal number. For example, if you write the number 11 which is stored in a variable declared to be of type int or long or any other integer type as 011, then the number 011 is taken to be 9 and 9 will be stored in that variable not 11.

7. If you begin a nonzero number declared to be of type real (float, double, etc) with 0 and if you do not include the decimal point, then the number is taken to be an octal number. For example, if you write the number 11 which is stored in a variable declared to be of type float or double or any other real type as 011, then the number 011 is taken to be 9 and 9 will be stored in that variable not 11. On the other hand, if you write the number as 011.0 (or 011.), then you'll be ok.

8. Adding unsigned to the data type means we are throwing away the negative values and keeping zero and the positive values presented in that data type.

Math Functions

NOTE: math functions are different than mathematical operations. Mathematical operations are +, /, *, etc.

1. In order for you to be able to use the following (mentioned in #2, #3, and #4 below) math functions, you must add the following line at the beginning of the program:

#include <cmath>

cmath is a header file (we'll explain header files in the future) in which those math functions are defined.

If you do not include the above mentioned line and you try to use one of those functions, you'll get a compile-time error message.

2. Let x be a number (of type real or integer either one), then for

· ex, you write exp(x)

· ln(x) (it's also called log(x)), you write log(x)

· log to the base 10 of x, you write log10(x)

· the sine of x, you write sin(x)

· the cosine of x, you write cos(x)

· the tangent of x, you write tan(x)

· the absolute value of x, you write fabs(x)

· the sqaure root of x, you write sqrt(x)

· the arcsin (sin inverse) of x, you write asin(x)

· the arccos (cos inverse) of x, you write acos(x)

· the arctan (tan inverse) of x, you write atan(x)

1. Let x and y be real numbers for which xy is defined. To find xy, you write pow(x,y)

2. Let x and y be real numbers. To find the remainder when x is divided by y, you write fmod(x,y)

3. Notice that if x and y are declared to be of type integer (int, long, etc), then fmod(x,y) is the same as x%y.

4. Notice that the % operation is used only for values declared to be of type integer (i.e. of type int, long, etc) and it cannot be used for values declared to be of type real (i.e. float, double, etc). For values declared to be of type real (i.e. float, double, etc), use fmod

Exercise 1:

Write a C++ program to read a real number x and to display (on the screen) the following in order:

1. 3sin(2x+1).

2. (cos(x2))3.

3. 4 sqrt(5+x2).

4. x2.

5. x-4.

6. Cubic root of x.

7. ln(1+2x2+ex).

8. f(x), where the function f is defined to be: f(x)=(e2x-sin(2x)+abs(2x-3x2))3.
Example:

The following is a program that reads a real number x and computes and displays 2x:

#include <iostream>

#include <cmath> //Math functions are included in this header file (called cmath).

using namespace std;

int main()

{

double x, y;

cout << "Enter a real number: " << endl;

cin >> x;

// Now compute 2^x and store the result in the variable y:

y = pow(2,x); // Line 10

// Now display the result:

cout << "2^" << x << " = " << y << endl; // Line 12

return 0;

}

NOTE: If you like, you can get rid of the variable y and replace lines 10 and 12 by:

cout << "2^" << x << " = " << pow(2,x) << endl;

That would give you exactly the same output. You can do it either way.

Remarks:

1. To represent an expression like x8, you write it as pow(x,8)

2. To represent an expression like cubic root of x, you write it as pow(x,1.0/3.0)

WARNING: It would be wrong to write it as: pow(x,1/3)

Reason: 1/3 in C++ is 0. So, you need to include the decimal point.

Exercise 2: What is the output of the following C++ program?

#include <iostream>

#include <cmath>

using namespace std;

int main()

{

double a= -0.5; // Notice we can initialize a here. Still it is not constant

// because the word const didn't proceed it.

int VAL=1000;

a++;

a=pow(a,3);

a=1/a;

a=a-5;

cout<<0.5*pow(2*a,2)+0.7<<endl;

// Notice we can include expressions after

// the insertion operator <<

// Notice also the argument of the function pow and of any other

// function can be an expression (of course it can be a constant

// value or a variable as well).

cout<<pow(2*log10(VAL),2)<<endl;

return 0;

}

Answer:

18.7

36

PAGE
2

