Handout 27

Arrays of Classes (Exercise)

Write a C++ program with the following features:

1. It declares a class called Student with the following 2 members:

· SSN of type string.

· Grade of type float.

· A function F.

2. Function main declares a one-dimensional array of 100 elements. The array is of type Student.

3. Then function main asks the user to enter the size of the array (N). N is the number of elements of A that will be processed.

4. The elements of the array are entered by the user.

5. Then function main passes A and N to function F of Class Student.

6. F is a void function that sorts the array in ascending order using Selection sort. The sorting is with respect to the grade. Note: Every student must keep his/her grade after sorting. So, when you swap the grades, don't forget to swap the corresponding SSN's. 

7. Then function main displays the sorted array neatly (each row must be on a separate line).

Solution:

#include <iostream>

#include <iomanip>

#include <string>

using namespace std;

class Student


{

private:


int Min_Ind(Student[],int,int);

public:



string SSN;



float Grade;



void F(Student[],int);


};  


int main()

{


int N,i;


Student A[100];  


cout<<"Enter the size of the array: ";


cin>>N;


cout<<"Enter the elements of A (SSN followed by grade):"<<endl;


for(i = 0; i < N; i++)



cin>>A[i].SSN>>A[i].Grade;


A[0].F(A,N);


cout<<"\nThe sorted array is:\n\n";


cout << setw(12) << "SSN" << setw(12) << "Grade" << endl;


for(i = 0; i < N; i++)


{
cout << setw(12) << A[i].SSN << setw(12) << A[i].Grade;



cout << endl;


}


cout << endl;


return 0;

}

int Student::Min_Ind(Student A[],int i,int N)


{
int k,MI;



MI = i;



for(k = i+1; k < N; k++)




if( (A[k].Grade) < (A[MI].Grade) )





MI = k;




return MI;


}

void Student::F(Student A[],int N)


{



int i,MI;



Student Temp;



for(i = 0; i < N-1 ; i++)



{




MI = Min_Ind(A,i,N);




Temp = A[i];




A[i] = A[MI];




A[MI] = Temp;



}


}

Error Handling

Example: The goal of this example is to read two positive integers N and M and then to display N mod M. If the user enters a nonpositive number, then I want the program to ask the user to re-enter the numbers. If the user enters something illegal  (like a character or a string), then I want the program to be terminated with an error message.

Note: If the first number entered is a positive integer, but the second is a positive number with a decimal point (i.e. real), then the program will remove the fractional part of the second and display the mod. For example, if the user enters 17 then 15.3, then the program will display 2, because it will take the second number to be 15. But, if the user enter 15.3 then 17, then the program will be terminated with an error message. This is because if you reading integers, the program keeps reading until it reaches a whitespace character or a non-digit character. In the first case (I mean when the input is 17 15.3), the program reads the first number which is 17 and then still it has to read another number, so it reads 15 and stops at the decimal point. Therefore the second number is taken to be 15. Since the program needs to read only 2 numbers, the program is not terminated. In the second case (I mean when the input is 15.3 17), the program reads 15 and assigns it to the first variable, then it stops at the decimal point, but the program needs to read a second number, so the second read operation fails because of the decimal point.  This problem can be fixed. So, In want you to modify the program to deal with this case. See the remarks at the end of the program.

#include <iostream>

#include <cmath>

using namespace std;

int main()

{


int N, M;


bool Flag = true;


while (Flag)


{



// This while loop is to check if the user entered a nonpositive integer.If so, then the user 

// will be asked to re-enter the numbers.



cout << "Enter two positive integers: " << endl;



cin >> N >> M;



// Check if there is a reading error. Such errors may occur from entering the numbers with 

// decimal points or from entering (by mistake) characters or strings. If there are errors, 

// terminate the program.



if ( !cin )



{




cout << "*** There is a reading error. ***" << endl;




// Now terminate the program.




return 1;



}



// Now check if a number is positive. If so, then set Flag to false to stop reading. If at l

// least one of the numbers is nonpositive, then keep flag true in order to keep reading

// until boths numbers are positive.



if ( (N > 0) && (M > 0) )




Flag = false;


}


// Now display the mod.


cout << N << " mod " << M << " = " << N % M << endl;


return 0;

}

// Still there is one case we haven't handled. That is the case when the user enters the second number with

// a nonzero fraction. For example, if the user enters

// 7 4.9

// then the program will display

// 7 mod 4 = 3

// Do you know how to modify the program so that if the user enters an input like that, the program asks the 

// user to re-enter the numbers? Think about it.

1
3

