Handout 23 (Part I)

Classes (Part I) (Page 538)
What are classes?

Example:

// Class containing factorial and sum functions.

#include <iostream>

using namespace std;

// Definition of class Fact_Sum begins here.

class Fact_Sum

{

private:

long P;

int i;

public:

long Factorial(int);

long Sum(int);

}; // Semicolon is needed.

// Definition of class Fact_Sum ends here.

int main()

{

float N;

Fact_Sum MyClass; // MyClass is an object (instance)

// of class Fact_Sum.

cout << "Enter a positive integer: ";

cin >> N;

cout << N <<"! = "

<< MyClass.Factorial(N) << endl;

cout << "The sum of the integers from 1 to "

<< N << " is "

<< MyClass.Sum(N) << endl; // Line *

return 0;

}

// Definition of function (method) Factorial of class Fact_Sum

long Fact_Sum::Factorial(int N)

{

P = 1;

for (i=1; i <= N ; i++)

P = P * i;

return P;

}

// Definition of function (method) Sum of class Fact_Sum

long Fact_Sum::Sum(int N)

{

P = 0;

for (i=1; i <= N ; i++)

P = P + i;

return P;

}

Question:

- What will happen if we put the following line after Line * ?

cout << MyClass.P << endl;

- Now make P public, what will be the output if you included the above line in the indicated location?

Remarks:

1. An instance of a class is called object of that class.

2. An object is a program component with data and functions.

3. Private class members are only accessible by members of the class.

4. Public class members are visible wherever the class object is visible.

5. Member functions of a class can be defined within the class.

6. When a member of a class uses another member, no dot is needed.

7. If a class member is not listed under public nor under private (i.e. at the beginning), then it's considered private.

8. Member functions of a class are called methods.

9. You can put public members first and then private members.

10. By default, all members of a structure are public.

11. cin is an object of class istream and cout is an object of class ostream. Classes istream and ostream are defined in the header file iostream. cin is declared an object of class istream and cout is declared an object of class ostream in the namespace std. So the header file iostream contains definitions of classes, etc and the namespace std contains declarations of variables, data types, etc. Some members of class istream are get, ignore, >>. Similarly, string is a class defined in the header file string. Some members of this class are c_str, find, length, size, etc.

Handout 23 (Part II)

Classes (Part II)

Remarks and Constructors

Remarks:

1. The only difference between structures and classes is that with structures, the default access is public, while with classes, the default is private. By the way, structures can have member functions, but usually people use structures if there are no member functions and if all members are to be public. If that's not the case, then people use classes. Also, you can declare a member of a structure to be public or private (the same way you do it with classes). You can declare, define, and access member functions of a structure the way you do it in classes.

2. A program that uses a class is called a client of the class, and the class is called a server.

3. Suppose you have two classes in your program and suppose they're called Class1 and Class2. Is it possible for them to have a function with the same name, say the name of the function is F? And is it possible for the program to have a function (not a member of a class or a struct) with the same name (i.e. F)? The answer to all of these questions is yes. It's possible for all of them to have a function with the same name. (It's also possible for all of them to have a function with the same name, same type, and same number and type of parameters. That's why we access the member functions from outside the class by writing the name of the object followed by a dot followed by the name of the function. For example, if both Class1, Class2, and the program have a function called F, then it's necessary for the program to know which F we mean in the call statement)

4. You cannot initialize data members of a class in the declaration of the class. For example, in our class Fact_Sum, we can't initialize i and P in declaration. So, suppose you want to initialize them, then how to do that? The answer is by using constructors.

5. A constructor is a special class function that is used to initialize an object automatically when the object is defined. The constructor will initialize the data members each time an object is defined for the class.

Example: The following program declares a class called rectangle which contains a member function for computing the area of the rectangle and a constructor for initializing the data members of the class.

#include <iostream>

using namespace std;

// Definition of class Rectangle begins here.

class Rectangle

{

private:

float Length,Width;

public:

Rectangle(float L, float W); // Prototype for the constructor. This is Line *

float Area();

}; // Semicolon is needed.

// Definition of class Rectangle ends here.

int main()

{

float Len, Wid;

cout << "Enter the length followed by the width: ";

cin >> Len >> Wid;

Rectangle Rec(Len,Wid); // Line **

cout << "The area is: "

<< Rec.Area() << endl;

return 0;

}

// Definition of function Rectangle of class Rectangle

Rectangle::Rectangle(float L, float W)

{

Length = L;

Width = W;

}

// Definition of function Area of class Rectangle

float Rectangle::Area()

{

return Length * Width;

}

Remarks about the Previous Program:

1. Look at Line **. I added arguments to the object when I declared it. You do that if you have a constructor. The arguments will be matched with the parameters of the constructor. For example, the first argument in Line ** will be assigned to L and the second to W. So, actually Line ** is doing two things. It's declaring Rec to be an object of type Rectangle and it's calling function Rectangle (the constructor) automatically and passing the arguments Len and Wid to it. Len will be matched with parameter L and Wid will be matched with parameter W.

2. Can you replace Line ** by

Rectangle Rec;

I.e. is it possible not to include the parameters? The answer is no if your program is as it's above, but if you change Line * to something like

Rectangle(float L = 0, float W = 0);

Then you can. I.e. all you have to do is to initialize the parameters in the constructor prototype (you can initialize them to anything not necessarily to zero).

Remarks about Constructors:

1. Constructors are used to initialize objects (i.e. data members).

2. The name of the constructor must be the same as the name of the class it's member in.

3. The constructor must be public.

4. The constructor function cannot be called used the dot notation.

5. The constructor cannot have a return type (including void).

6. The constructor can have parameters.

7. A constructor can be overloaded.

Example: What is the output of the following program?

#include <iostream>

using namespace std;

float Area();

// Definition of class Rectangle begins here.

class Rectangle

{

private:

float Length,Width;

public:

Rectangle(float L, float W); // Prototype for the constructor

float Area();

}; // Semicolon is needed.

// Definition of class Rectangle ends here.

// Definition of struct Circle begins here.

struct Circle

{

private:

float Radius;

public:

Circle(float R); // Prototype for the constructor

float Area();

}; // Semicolon is needed.

// Definition of struct Circle ends here.

float a = 7;

int main()

{

float a, b;

cout << "a followed by b ";

cin >> a >> b;

Rectangle Rec(a,b);

Circle Circ(a);

cout << Rec.Area() << endl;

cout << Circ.Area() << endl;

cout << Area() << endl;

return 0;

}

// Definition of function Rectangle of class Rectangle

Rectangle::Rectangle(float L, float W)

{

Length = L;

Width = W;

}

// Definition of function Area of class Rectangle

float Rectangle::Area()

{

return Length * Width;

}

// Definition of function Circle of class Circle

Circle::Circle(float R)

{

Radius = R;

}

// Definition of function Area of struct Circle

float Circle::Area()

{

return 3.14 * Radius * Radius;

}

// Definition of function Area begins here

float Area()

{

return a*a;

}

