Handout 22

The struct Data Type

Part I

Pages 520-535

Struct in C++ is simply a record in which you can group several declarations together. For example, suppose that you're teaching a class and you want to process data for each one of your students and suppose that each students has a record consisting of his/her name, his/her SSN (assume of type int), his/her course (numeric) grade, and his/her letter grade. Now if you want to put the data in an array, then you can't use one array to do that, because the name has to be of type string, the course grade of type int, the SSN of type int, and the letter grade of type char. Remember arrays must contain a single data type. So, how to declare a struct (record) data type?

 Syntax:

struct Struct_Name

{

Type1 List_of_Identifiers;

Type2 List_of_Identifiers;

.

.

.

Typen List_of_Identifiers;

};

Now if you want to declare S to be a variable of type Struct_Name, then you do it as follows:

Struct_Name S;

Example:

Define Student to be a struct data type with the following members: Name (of type string), SSN (of type int), Grade (of type int), Lgrade (of type char). Then declare Student1 and Student2 to be variables of type Student.

Solution:

// Definition of struct begins here.

struct Student

{

string Name;

int SSN, Grade;

char LGrade;

}; // The semicolon here is needed.

// Definition of struct ends here.

Student Student1, Student2;
// Declaring Student1 and Student2 to be variables of type Student.

Remarks:

1. You need the semicolon after the right brace. Why? Because any declaration statement must end with a semicolon.

2. Assignment is allowed on structures. Thus, you can do this:

Student1=Student2;

3. I/O operations are not allowed on an entire structure. E.g. you can't do this:

cin >> Student1;

Instead, you must read the members member by member.

Also, You can't do this:

cout << Student1;

Instead, you must display the members member by member.

4. You can't do arithmetic operations (*,+, etc) on an entire structure.

5. You can't compare two structures. But, you can compare their members.

6. Structures can be value/reference parameters/arguments.

7. A function can return an entire structure by a return statement.

8. You can do the previous example as follows:

struct Student

{

string Name;

int SSN, Grade;

char LGrade;

} Student1, Student2;

9. You can have structures of structures.

10. You can have arrays of structures.

11. You can have structures of arrays.

Example on how to access struct memebers and how to print them:

What is the output of the following:

#include <iostream>

#include <string>

using namespace std;

int main()

{

// Definition of struct begins here.

struct Student

{

string Name;

int SSN, Grade;

char LGrade;

};

// Definition of struct ends here.

Student Student1; // Declaring Student1 to be a variable of type Student.

Student1.Name = "John Smith";

Student1.SSN = 333333333;

Student1.Grade = 94;

Student1.LGrade = 'A';

// Display the record.

cout << "Name: " << Student1.Name << endl;

cout << "SSN: " << Student1.SSN << endl;

cout << "Grade: " << Student1.Grade << endl;

cout << "Letter Grade: " << Student1.LGrade << endl;

return 0;

}

Answer:

Name: John Smith

SSN: 333333333

Grade: 94

Letter Grade: A

Handout 22 (Part II)

More About Structures

Pages 547-557

Today's Topics:

· Structures as Function Parameters

· Functions Returning Structures

· Arrays of Structures

Structures as Function Parameters

Example:

#include <iostream>

#include <string>

using namespace std;

// Definition of struct begins here.

struct Student

{

string Name;

int SSN, Grade;

char LGrade;

};

// Definition of struct ends here.

void Print(Student); // Function prototype

int main()

{

Student Student1, S;

Student1.Name = "John Smith";

Student1.SSN = 333222111;

Student1.Grade = 94;

Student1.LGrade = 'A';

S = Student1;

S.Grade = 84;

S.LGrade = 'B';

// Call function Print.

Print(S);

return 0;

}

void Print(Student N)

{

cout << "Name: " << N.Name << endl;

cout << "SSN: " << N.SSN << endl;

cout << "Grade: " << N.Grade << endl;

cout << "Letter Grade: " << N.LGrade << endl;

}

Output:

Functions Returning Structures

Example: The following program reads the coordinates of two points, say P1 = (x1,y1) and P2 = (x2,y2), and it finds the midpoint MP = ((x1+x2)/2 , (y1+y2)/2). The midpoint is calculated by a function called F. The input to F is P1 and P2 (each point is a structure with two elements of type double; the first element is the x-coordinate of the point and the second is the y-coordinate of the point) and the output to F is the midpoint (the midpoint is also a structure).

#include <iostream>

using namespace std;

// Definition of struct begins here.

struct Point

{

double x,y;

};

// Definition of struct ends here.

Point F(Point,Point); // Function prototype

int main()

{

Point Point1, Point2, MidPoint;

cout << "Enter the x-coordinate of the "

"first point followed by the "

"y-coordinate ";

// Read the x-coordinate of Point1,

// then the y-coordinate.

cin >> Point1.x >> Point1.y;

cout << "Enter the x-coordinate of the "

"second point followed by the "

"y-coordinate ";

// Read the x-coordinate of Point2, then the y-coordinate.

cin >> Point2.x >> Point2.y;

// Call function F to get the midpoint.

MidPoint=F(Point1,Point2);

// Display the midpoint.

cout << "The midpoint is: ("

<< MidPoint.x << "," << MidPoint.y

<< ")." << endl;

return 0;

}

Point F(Point P1, Point P2)

{

Point MP;

// Calculate the x-coordinate of the midpoint.

MP.x=(P1.x+P2.x)/2.0;

// Calculate the y-coordinate of the midpoint.

MP.y=(P1.y+P2.y)/2.0;

return MP;

}

Question: What will be displayed by the program if the input is

3 5

9 4

Arrays of Structures

Example:

#include <iostream>

#include <string>

using namespace std;

int main()

{

struct Employee

{

string Name;

float Salary;

};

// Declare A to be a 1-D array of type Employee and

// of size 2.

Employee A[2];

// Assign name and Salary for the first Employee.

A[0].Name = "J. Smith";

A[0].Salary = 5400;

// Assign name and Salary for the second Employee.

A[1].Name = "A. Carter";

A[1].Salary = 4600;

cout << "There are two employees; "

<< A[0].Name << " and "

<< A[1].Name << endl;

cout << "Total salaries paid: "

<< A[0].Salary + A[1].Salary << endl;

return 0;

}

Output:

Exercise: Find the output of the following program

#include <iostream>

using namespace std;

struct MinMax

{

int Min, Max;

};

MinMax F(int B[]);

const int Size=6;

int main()

{

int B[] = {-1, 2, 4, -5, 8, -4};

MinMax X;

X = F(B);

cout << X.Min << " " << X.Max << endl;

return 0;

}

MinMax F(int A[])

{

MinMax S;

int min = A[0], max = A[0];

for (int i=0; i < Size ; i++)

{

if (A[i] < min)

min = A[i];

if (A[i] > max)

max = A[i];

}

S.Min = min;

S.Max = max;

return S;

}

Exercise: Find the output of the following program

#include <iostream>

#include <string>

using namespace std;

// Definition of struct begins here.

struct Student

{

string Name;

int SSN, Grade;

char LGrade;

};

// Definition of struct ends here.

void F(Student&); // Function prototype

int main()

{

Student Student1, S;

Student1.Name = "John Smith";

Student1.SSN = 333222111;

Student1.Grade = 94;

Student1.LGrade = 'A';

S = Student1;

// Call function F.

F(S);

// Display the new record.

cout << "Name: " << S.Name << endl;

cout << "SSN: " << S.SSN << endl;

cout << "Grade: " << S.Grade << endl;

cout << "Letter Grade: " << S.LGrade << endl;

return 0;

}

void F(Student& N)

{

N.Grade = 84;

N.LGrade = 'B';

}

Exercise:
// Find the errors if any

#include <iostream>

#include <string>

using namespace std;

int main()

{

struct st1

{

string n1;

int g1;

float y;

};

struct st2

{

struct st1

{

string n1;

int g1;

float z;

};

st1 a;

int b;

};

st1 f;

st2 d;

d.b = 9;

d.a.n1 = "alpha";

d.a.g1 = 87;

d.a.y = 93.5;

f.y = 93.5;

f.z = 17.5;

cout << d.b << endl;

cout << d.a.n1 << endl;

cout << d.a.g1 << endl;

return 0;

}

1
7

