Handout 20

User-Defined Data Types

Pages 485-493, 195

Enumerated Data Types:

Example:

enum Day {Sun, Mon, Tues, Wed, Thur, Fri, Sat}; // Definition *

Comments:

1. Day is called enumeration type.

2. {Sun, Mon, Tues, Wed, Thur, Fri, Sat} is called the domain of Day. The domain of an enumerated data type should be an ordered list of literal values expressed as identifiers.

3. Sun has the integer value of 0, Mon has the integer value of 1, Tues has the integer value of 2, …, Sat has the integer value of 6.

4. Sun, Mon, Tues, Wed, Thur, Fri, and Sat are called enumerators.

5. The enumerators are ordered. In other words,

Sun < Mon < Tues < Wed < Thur < Fri < Sat.

6. You can assign different integer values for the enumerators. For example, you could do this:

enum Day {Sun = 1, Mon = 2, Tues = 3, Wed = 4, Thur = 5, Fri = 6, Sat = 7};

Here it's still

Sun < Mon < Tues < Wed < Thur < Fri < Sat.

But, if you define Day this way

enum Day {Sun = 1, Mon = 2, Tues = 9, Wed = 4, Thur = 5, Fri = 6, Sat = 7};

Then

Sun < Mon < Wed < Thur < Fri < Sat < Tues.

But, if you define Day this way

enum Day {Sun , Mon = 2, Tues , Wed = 9, Thur, Fri = 6, Sat = 2};

Then

Sun < Mon = Sat < Tues < Fri < Wed < Thur.

7. The syntax for declaring enumerated data types is:

enum Name {Enumerator, Enumerator, …};

where each numerator is of the form

Identifier = Constant_Integer_Expression
Where the underlined parts are optional.

Remember that the identifier must begin with an alphabet and it can contain only alphabets, digits, and underscore.

8. You can't have repetition in the domain of the data type. For example, you can't have

 enum Day {Sun, Mon, Tues, Wed, Thur, Fri, Mon, Sat};

Notice that Mon is repeated.

9. How to declare a variable, say A, of type Day? Answer:

Day A;

10. If you want to assign Mon for A, then you do it this way:

A = Mon;

11. You can't have an assignment like

Mon = 4;

outside the declaration statement.

Type coercion is allowed only from an enumeration type to an integral type, but it is not allowed from an integral type to an enumeration type.

12. For example, if N is a variable of type int and you have also the definition of Day above, then you can so this:

N = Mon;

13. Basic stream I/O (i.e. input and output operations) are not allowed for enumerated data types.

14. You can use switch case on enumerated data types.

15. If A is a variable of type Day, then you can't do arithmetic operations like

A++;

Or

A = A + 1;

But, you can have

A = Day(A+1);

But, you can't have

A=Day(A++);

16. You can do comparisons and assignments on enumerated data types. For example, you can do this (assume A is a variable of type Day)

if (A < Mon)

cout << "Yes";

A = Mon;

if (A == Wed)

cout << "Yes";

Example: What is the output of the following?

#include <iostream>

#include <string>

using namespace std;

int main()

{

enum Day {Sun, Mon, Tues = 8, Wed=11 , Thur = 5, Fri, Sat = 10};

int N;

N = Fri;

cout << "N= " << N << endl;

Day D;

D = Mon;

N = D;

cout << N + 5<< endl;

D = Day (Sat + 1);

if (D == Wed)

cout << "Yes" << endl;

D = Wed;

switch (D)

{

case Mon: case Tues: case Wed: case Thur: case Fri:

cout << "Weekday" << endl;

break;

case Sat: case Sun:

cout << "Weekend" << endl;

}

return 0;

}

Other User-Defined Data Types:

Suntax1:

typedef Existing_Data_Type New_Name;

Example:

typedef int Integer;

If you do this declaration in your program, then you can use Integer instead of int in your program.

Syntax 2:

typedef Array_Declaration;

Example:

What is the output of the following program?

#include <iostream>

using namespace std;

int main()

{

typedef
int Integer; // A new type called Integer.

// Now int and Integer are the same.

Integer N; // Declaring N a variable of type Integer.

N = 3;

cout << N * N << endl;

typedef int Array[10]; // Array is a new data type

// It's for arrays of type

// int and of size 10.

Array B; // Declaring B to be a variable of type Array.

for (int i=0; i < 10; i++)

B[i] = i*i;

cout << B[N+N] << endl;

return 0;

}

PAGE
1

