Handout 15

Files

So far the input to our programs used to come from the keyboard and the output used to go to the screen. But suppose we have a large amount of input data or suppose we did a mistake while entering the data by the keyboard, then we have to start from the beginning. But by using files for input and/or output we can avoid such problems. There are many other advantages for using files.

Question: What are the advantages of using files for input/output?

Answer: If the input data is large, it becomes easier to use the editor to write the data on a file, then to use that file as input. Also, reading the input from a file enables us to correct mistakes in the input data and to modify the data easily. In addition, if the input data is huge, then we can enter the data into the file on stages. Also, it might happen that more than one program uses the same input data. Saving the input data on a file in that case saves us the extra effort of entering the data two times or more.

Writing the output to a file has also several advantages. It enables us to look at the output anytime we want. That will save us the effort of executing the program again and again. It also makes printing the data easier. Moreover, sometimes we may need the output of one program to be input of another. Saving the output of the first on a file and using that file as input for the second saves us a lot of time and lots of efforts.

We will discuss first two types of files; input files and output files. With such types of files, you canNOT read from and write to the same file at the same time. To use files, you need to do the following:

1. Include the header file fstream by adding the following line at the top of your program:

#include <fstream>

2. Declare the file you want to use. For example, if you want the file to be an input file, then you need to include a line like

ifstream inFile;

Notice that inFile is not the name of the file that includes the data. Also notice that you can use other identifiers instead of inFile.

On the other hand, if you want the file to be an output file, then you need to include a line like

ofstream outFile;

Notice that outFile is not the name of the file that will store the output. Also notice that you can use other identifiers instead of outFile.

3. Open the file. For example, if the name of the input file is Data1.dat and if inFile is of "type" ifstream (see step #2), then you must include the line

inFile.open("Data1.dat");

before you start reading the file Data.dat and after you declare inFile to be of "type" ifstream.

On the other hand, if you declare outFile to be of type ofstream (ofstream is used for output files only and ifstream is used for input files only) and if you want the data to be written on a file called Data1.dat (i.e. Data1.dat is an output file), then you must include the line

outFile.open("Data1.dat");

before you start writing to the file Data1.dat and after you declare outFile to be of "type" ofstream.

4. All the istream operations (the extraction operator >>, the get function, the getline function, etc) are valid for ifstream and all the ostream operations (the insertion operator <<, endl, setw, setprecision, fixed, showpoint, etc) apply to ofstream.

5. Close the file. For example, if you declared inFile to be of type ifstream, include

inFile.close();

when you're done reading the file. On the other hand, if you declared outFile to be of type ofstream, include

outFile.close();

when you're done writing to the file.

Remarks:

1. As we said before, with these types of files, you cannot read from and write to the same file at the same time.

2. There is another type of files which can be used for reading and writing at the same time. The identifier of that file should be of type fstream. That file is a random-access file while the files we covered so far (I mean those of type ifstream and ofstream) are sequential files.
3. Every file has a reading marker which is positioned at the beginning when the file is opened.

4. If the file is an output file (i.e. opened for output), then the open operation checks to see whether the file already exists. If the file does not exist, a new empty file is created. If the file already exists, it erases the old contents of the file and it starts writing at the beginning.

5. If you try to open a file that does not exist for input, the open operation fails and all file input operations are null operations. No error messages will be issued, but the program will use unknown values in every calculation that depends on the failed input.

6. Something similar to that mentioned in #4 happens when a reading error occurs (e.g. if you want your program to read two integers but you enter the input as 12.56).

7. It's better to include the close statement when you're done with the file.
8. The input file should be in the same directory where your program is and the output file will be there.

9. Here is how to open a file from a directory different than that of the program. Example: if you want to open a file, say for reading, from drive C and say the name of the file is abc123.dat, directory Email, your file-open statement should be

inFile.open("C:\\Email\\abc123.dat");

10. To delete a file during execution, say the name of the file is abc123.dat and the file is in drive C, directory Email, you use the statement

remove("C:\\Email\\abc123.dat");
11. If you want to enter the name of the file, say the name is Data.dat during the execution of the program, then you have to do the following (assume the file is an input file):

string FileName;
// You can have another variable not necessarily FileName

ifstream inFile;

cout << "Enter the name of the file: " << endl;

cin >> FileName; // Here you enter Data.dat

inFile.open(FileName.c_str());

// It's wrong to have inFile.open(FileName);

Example: This is an example on how to read files (the name of the file is entered by the user).

/*

The following program reads Fahrenheit temperature from a file, whose name will be entered by the user, calculates the corresponding Celsius temperature and prints (displays) both the Fahrenheit and Celsius temperatures on the screen. Each line of the ouput should contain a Fahrenheit temperature followed by its corresponding Celsius temperature. Thus, here we have an input file, but no output file.

*/

#include <iostream>

#include <fstream> // Needed for files

#include <string>

using namespace std;

int main()

{

double Cel, Fah;

ifstream inFile; // ifstream is used for input files only.

string FileName;

// Ask the user for the name of the input file.

cout << "Enter the name of the input file: " << endl;

cin >> FileName;

inFile.open(FileName.c_str());
// Try to open the input file (for reading).

// The following if statement is to handle the case when there is an error in opening the file.

if (!inFile)
// Handles the case when the file is already opened.

{

cout << "Can't open the file" << endl;

return 1;
// Terminate the program.

}

// If the file opens successfully, then you can proceed.

// Now read the first Fahrenheit value from the file.

inFile >> Fah;
// priming read.

while (inFile)
// while there are no reading errors

{

// Compute the corresponding Celsius temperature.

Cel = (5.0 / 9.0) * (Fah - 32.0);
// Line *

cout << Fah << " " << Cel << endl;

inFile >> Fah;
// Get the next Celsius value from the input file. Line **

// Notice you cannot put Line ** before Line *. Why?

}

inFile.close();

return 0; // return 0 is used when the program ends successfully, return 1 is used when the

// program does not end successfully.

}

Note: If the main function is of type void, then replace return 1; by exit(1);
Example: This is another example on how to write to files (the name of the file is enterd by the user).

/*

The following program reads a world, then 2 real numbers from the keyboard and then writes the word and the numbers to a file whose name will be entered by the user. The word is to be written on the first line and the 2 numbers on the second line. Notice that what we have here is an output file.

*/

#include <iostream>

#include <fstream> // Needed for files

#include <string>

using namespace std;

int main()

{

double Number1, Number2;

ofstream outFile; // ofstream is used for output files only.

string FileName, Word;

// Ask the user for the name of the output file.

cout << "Enter the name of the output file: " << endl;

cin >> FileName;

outFile.open(FileName.c_str());
// Open the output file (for writing).

// Ask the user to enter a word.

cout << "Enter a word: " << endl;

cin >> Word;

// Write the word to the file and jump to the next line.

outFile << Word << endl;

// Ask for the 2 real numbers.

cout << "Enter two real numbers: " << endl;

cin >> Number1 >> Number2;

// Write the 2 numbers to the file.

// Do not forget to leave space between them.

outFile << Number1 << " " << Number2 << endl;

outFile.close();

return 0;

}

Example on how to read from a file and write to another file. The names of both files are not entered by the user.

The following program reads Fahrenheit temperature from a file called Fah.dat, calculates the corresponding Celsius temperatures and writes both the Fahrenheit and Celsius temperatures on a file called Fah_Cel.dat. Each line of Fah_Cel.dat should contain a Fahrenheit temperature followed by its corresponding Celsius temperature. Notice that Fah.dat should be your input file and Fah_Cel.dat should be your output file.

#include <iostream>

#include <fstream>

using namespace std;

int main()

{

double Cel, Fah;

ifstream
inFile;

ofstream
 outFile;

inFile.open("Fah.dat");
// Try to open the input file Fah.dat for reading.

// The following if statement is to handle the case when there is an error in opening the file.

if (!inFile)
// Handles the case when the file is already opened.

{

cout << "Can't open the file" << endl;

return 1;
// Terminate the program.

}

// If the file opens successfully, then you can proceed.

// Now open the output file Fah_Cel.dat for writing.

outFile.open("Fah_Cel.dat");

outFile << "Fah." << " " << "Celsius" << endl;

outFile << "----" << " " << "----" << endl;

// Now read the first Fahrenheit value.

inFile >> Fah;
// priming read.

while (inFile)
// while previous input succeeded do …

{

// Compute the corresponding Celsius temperature.

Cel = (5.0 / 9.0) * (Fah - 32.0);
// Line *

outFile << Fah << " " << Cel << endl;

inFile >> Fah;
// Get the next Celsius value from the input file. Line **

// Notice you cannot put Line ** before Line *. Why?

}

inFile.close();
 // Close the input file.

outFile.close();
 // Close the output file.

return 0; // return 0 is used when the program ends successfully, return 1 is used when the

// program does not end successfully.

}

If the input file Fah.dat contains the following

32.5

40

55.3

or the following (this time all values are on the same line)

32.5 40 55.3

then the output file Fah_Cel.dat will be as follows (after execution):

Fah. Cel.

---- ----

32.50 0.28

40.00 4.44

55.30 12.94

Example on how to read a file and display its contents on the screen exactly as they are in the file. The name of the file is not entered by the user.

Write a C++ program to read an input file called String.st one line at a time and to display the file as it's on the screen.

Solution:

#include <iostream>

#include <string>

#include <fstream>

using namespace std;

int main()

{

ifstream inFile;

string St;

inFile.open("String.st");

if (!inFile)

{

cout << "Can't open the file" << endl;

return 1;

}

getline(inFile,St);
// priming read.

// The previous statement reads the first line of the input file

// String.st and stores the line in the variable St

while (inFile)

{

cout << St << endl; // Display the read line.

getline(inFile,St); // Read next line of String.st and

 // store it in the variable St

}

inFile.close();

return 0;

}

For example, if the contents of the file String.st are

This is the second example.

The name of this file is String.st

Then when executing the program, the following will be displayed:

This is the second example.

The name of this file is String.st
Example on how to read a file and display its contents on the screen exactly as they are in the file. The name of the file is entered by the user.

Modify the previous program to make it read an input file, whose name will be entered by the user, one line at a time and to display the contents of the file as they are.

Solution:

#include <iostream>

#include <string>

#include <fstream>

using namespace std;

int main()

{

ifstream inFile;

string St, FileName;

cout << "Enter the name of the file:" << endl;

cin >> FileName;

inFile.open(FileName.c_str());

if (!inFile)

{

cout << "Can't open the file" << endl;

return 1;

}

getline(inFile,St);
// priming read.

while (inFile)

{

cout << St << endl;

getline(inFile,St); // Read next line.

}

inFile.close();

return 0;

}

Here is a sample run (assume that the input file String.st has the same contents as in the previous example):
[image: image1.png]Enter the name of the file:
String.st

This is the second example.

The name of this file is String.st

Press any key to continue

Example: Write a C++ program to read a file whose name will be entered by the user and to count how many lowercase alphabets and how many uppercase alphabets available in the file. Then display the result on the screen.

Solution:
#include <iostream>

#include <fstream>

#include <string>

using namespace std;

int main()

{

char Ch;

string FileName;

int Lower = 0, Upper = 0;

ifstream inFile;

// Ask for the name of the input file

cout << "Enter the name of the input file: " << endl;

cin >> FileName;

// Now try to open the file.

inFile.open(FileName.c_str());

// The following loop is for the case

// if there is a problem in opening the file.

if (!inFile)

{

cout << "Can't open the file." << endl;

// Terminate the program.

return 1;

}

// If the file opened successfully, then you can proceed.

// Now read the first character.

inFile.get(Ch);

// Question: Can you replace the above line by

// inFile >> Ch;

while (inFile)

{

// if the character is between a and z

// then it's lowercase.

if ((Ch >= 'a') && (Ch <= 'z'))

Lower++;

// if the character is between A and Z

// then it's uppercase.

else if ((Ch >= 'A') && (Ch <= 'Z'))

Upper++;

// Note: You cannot replace else if above

// by else. Why? Because not lowercase

// does not mean uppercase. The character

// may be a digit or a symbol like $.

// Now get the next character

inFile.get(Ch);

}

// Now display the result.

cout << "There are " << Lower << " small letters."

 << endl;

cout << "There are " << Upper << " capital letters."

 << endl;

inFile.close(); // Close the file.

return 0;

}

Note: see the example on page 291 of the textbook. It is an important example.

Error Handling

Example: The goal of this example is to read two positive integers N and M and then to display N mod M. If the user enters a nonpositive number, then I want the program to ask the user to re-enter the numbers. If the user enters something illegal (like a character or a string), then I want the program to be terminated with an error message.

Note: If the first number entered is a positive integer, but the second is a positive number with a decimal point (i.e. real), then the program will remove the fractional part of the second and display the mod. For example, if the user enters 17 then 15.3, then the program will display 2, because it will take the second number to be 15. But, if the user enter 15.3 then 17, then the program will be terminated with an error message. This is because if you reading integers, the program keeps reading until it reaches a whitespace character or a non-digit character. In the first case (I mean when the input is 17 15.3), the program reads the first number which is 17 and then still it has to read another number, so it reads 15 and stops at the decimal point. Therefore the second number is taken to be 15. Since the program needs to read only 2 numbers, the program is not terminated. In the second case (I mean when the input is 15.3 17), the program reads 15 and assigns it to the first variable, then it stops at the decimal point, but the program needs to read a second number, so the second read operation fails because of the decimal point. This problem can be fixed. So, In want you to modify the program to deal with this case. See the remarks at the end of the program.

#include <iostream>

#include <cmath>

using namespace std;

int main()

{

int N, M;

bool Flag = true;

while (Flag)

{

// This while loop is to check if the user entered a nonpositive integer.If so, then the user // will be asked to re-enter the numbers.

cout << "Enter two positive integers: " << endl;

cin >> N >> M;

// Check if there is a reading error. Such errors may occur from entering the numbers with

 // decimal points or from entering (by mistake) characters or strings. If there are errors,

// terminate the program.

if (!cin)

{

cout << "*** There is a reading error. ***" << endl;

// Now terminate the program.

return 1;

}

// Now check if a number is positive. If so, then set Flag to false to stop reading. IF at

// least one of the numbers is nonpositive, then keep flag true in order to keep reading

// until boths numbers are positive.

if ((N > 0) && (M > 0))

Flag = false;

}

// Now display the mod.

cout << N << " mod " << M << " = " << N % M << endl;

return 0;

}

// Still there is one case we haven't handled. That is

// the case when the user enters the second number with

// a nonzero fraction. For example, if the user enters 7 4.9

// then the program will display

// 7 mod 4 = 3

// Do you know how to modify the program so that if the

// user enters an input like that, the program asks the

// user to re-enter the numbers? Think about it.

Solution of the last example on page 4:

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

int main()

{

char Ch;

string FileName;

int Lower = 0, Upper = 0;

ifstream inFile;

// Ask for the name of the input file

cout << "Enter the name of the input file: " << endl;

cin >> FileName;

// Now try to open the file.

inFile.open(FileName.c_str());

// The following loop is for the case

// if there is a problem in opening the file.

if (!inFile)

{

cout << "Can't open the file." << endl;

// Terminate the program.

return 1;

}

// If the file opened successfully, then you can proceed.

// Now read the first character.

inFile.get(Ch);

// Question: Can you replace the above line by

// inFile >> Ch;

while (inFile)

{

// if the character is between a and z

// then it's lowercase.

if ((Ch >= 'a') && (Ch <= 'z'))

Lower++;

// if the character is between A and Z

// then it's uppercase.

else if ((Ch >= 'A') && (Ch <= 'Z'))

Upper++;

// Note: You cannot replace else if above

// by else. Why? Because not lowercase

// does not mean uppercase. The character

// may be a digit or a symbol like $.

// Now get the next character

inFile.get(Ch);

}

// Now display the result.

cout << "There are " << Lower << " small letters."

 << endl;

cout << "There are " << Upper << " capital letters."

 << endl;

inFile.close(); // Close the file.

return 0;

}

Example: This is another example on how to read files.

/*

The following program reads Fahrenheit

temperature from a file, whose name will

be entered by the user, calculates the

corresponding Celsius temperature and

prints (displays) both the Fahrenheit and

Celsius temperatures on the screen. The Celsius

and the Fahrenheit temperatures should be

displayed with 2 decimal places only. Each

line of the ouput should contain a Fahrenheit

temperature followed by its corresponding

Celsius temperature. Thus, here we have an input

file, but no output file.

*/

#include <iostream>

#include <fstream> // Needed for files

#include <string>

using namespace std;

int main()

{

double Cel, Fah;

ifstream inFile; // ifstream is used for input files only.

string FileName;

// Ask the user for the name of the input file.

cout << "Enter the name of the input file: " << endl;

cin >> FileName;

inFile.open(FileName.c_str());
// Try to open the input file (for reading).

// The following if statement is to handle the case when there is an error in opening the file.

if (!inFile)
// Handles the case when the file is already opened.

{

cout << "Can't open the file" << endl;

return 1;
// Terminate the program.

}

// If the file opens successfully, then you can proceed.

// Now read the first Fahrenheit value from the file.

inFile >> Fah;
// priming read.

while (inFile)
// while there are no reading errors

{

// Compute the corresponding Celsius temperature.

Cel = (5.0 / 9.0) * (Fah - 32.0);
// Line *

cout << fixed << setprecision(2) << Fah << " " << Cel << endl;

inFile >> Fah;
// Get the next Celsius value from the input file. Line **

// Notice you cannot put Line ** before Line *. Why?

}

inFile.close();

return 0; // return 0 is used when the program ends successfully, return 1 is used when the

// program does not end successfully.

}

Example: This is another example on how to write to files.

/*

The following program reads a world, then 2

real numbers from the keyboard and then writes

the word and the numbers to a file whose name

will be entered by the user. The word is to be

written on the first line and the 2 numbers on

the second line. Notice that what we have here

is an output file.

*/

#include <iostream>

#include <fstream> // Needed for files

#include <string>

using namespace std;

int main()

{

double Number1, Number2;

ofstream outFile; // ofstream is used for output files only.

string FileName, Word;

// Ask the user for the name of the output file.

cout << "Enter the name of the output file: " << endl;

cin >> FileName;

outFile.open(FileName.c_str());
// Open the output file (for writing).

// Ask the user to enter a word.

cout << "Enter a word: " << endl;

cin >> Word;

// Write the word to the file and jump to the next line.

outFile << Word << endl;

// Ask for the 2 real numbers.

cout << "Enter two real numbers: " << endl;

cin >> Number1 >> Number2;

// Write the 2 numbers to the file.

// Do not forget to leave space between them.

outFile << Number1 << " " << Number2 << endl;

outFile.close();

return 0;

}

Remarks:

1. If you want to open a file, say for reading, from drive C and say the name of the file is abc123.dat, directory Email, your file-open statement should be

inFile.open("C:\\Email\\abc123.dat");

2. There is another type of files which can be used for reading and writing at the same time. The identifier of that file should be of type fstream. That file is a random-access file while the files we covered so far (I mean those of type ifstream and ofstream) are sequential files.

3. It's better to include the close statement. The close statement is included in all the examples in this handout.

4. To delete a file during execution, say the name of the file is abc123.dat and the file is in drive C, director Email, you use the statement

remove("C:\\Email\\abc123.dat");

Error Handling

Example: The goal of this example is to read two positive integers N and M and then to display N mod M. If the user enters a nonpositive number, then I want the program to ask the user to re-enter the numbers. If the user enters something illegal (like a character or a string), then I want the program to be terminated with an error message.

Note: If the first number entered is a positive integer, but the second is a positive number with a decimal point (i.e. real), then the program will remove the fractional part of the second and display the mod. For example, if the user enters 17 then 15.3, then the program will display 2, because it will take the second number to be 15. But, if the user enter 15.3 then 17, then the program will be terminated with an error message. This is because if you reading integers, the program keeps reading until it reaches a whitespace character or a non-digit character. In the first case (I mean when the input is 17 15.3), the program reads the first number which is 17 and then still it has to read another number, so it reads 15 and stops at the decimal point. Therefore the second number is taken to be 15. Since the program needs to read only 2 numbers, the program is not terminated. In the second case (I mean when the input is 15.3 17), the program reads 15 and assigns it to the first variable, then it stops at the decimal point, but the program needs to read a second number, so the second read operation fails because of the decimal point. This problem can be fixed. So, In want you to modify the program to deal with this case. See the remarks at the end of the program.

#include <iostream>

#include <cmath>

using namespace std;

int main()

{

int N, M;

bool Flag = true;

while (Flag)

{

// This while loop is to check if the user entered

// a nonpositive integer.If so, then the user will

// be asked to re-enter the numbers.

cout << "Enter two positive integers: " << endl;

cin >> N >> M;

// Check if there is a reading error. Such errors

// may occur from entering the numbers with decimal

// points or from entering (by mistake) characters

// or strings.

// If there are errors, terminate the program.

if (!cin)

{

cout << "*** There is a reading error. ***" << endl;

// Now terminate the program.

return 1;

}

// Now check if a number is positive.

// If so, then set Flag to false to stop

// reading. IF at least one of the

// numbers is nonpositive, then keep flag

// true in order to keep reading until

// boths numbers are positive.

if ((N > 0) && (M > 0))

Flag = false;

}

// Now display the mod.

cout << N << " mod " << M << " = " << N % M << endl;

return 0;

}

// Still there is one case we haven't handled. That is

// the case when the user enters the second number with

// a nonzero fraction. For example, if the user enters

// 7 4.9

// then the program will display

// 7 mod 4 = 3

// Do you know how to modify the program so that if the

// user enters an input like that, the program asks the

// user to re-enter the numbers? Think about it.

� EMBED Word.Picture.8 ���

PAGE
10

[image: image2.png]Enter the name of the file:
String.st

This is the second example.

The name of this file is String.st

Press any key to continue

_1063377089.doc
[image: image1.png]Enter the name of the file:
String.st

This is the second example.

The name of this file is String.st

Press any key to continue

